跳到主要內容

臺灣博碩士論文加值系統

(44.210.132.31) 您好!臺灣時間:2022/08/19 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張昆輝
研究生(外文):Kuen-Huei Chang
論文名稱:一三六與二六族異質p-n接面太陽電池的全程reactivesputter製作
指導教授:黃惠良黃惠良引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:69
中文關鍵詞:太陽能電池反應濺鍍銅銦硫化合物氧化鋅
外文關鍵詞:solar cellCuInS2ZnSZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
面對下一世紀能源短缺問題,發展一個可以永續使用的能源─太陽能電池是當務之急.在眾多太陽能電池材料中,一三六族與二六族半導體為最具未來發展潛力者。目前雖然市面上雖已有以此類產品,但是其製作過程相當繁瑣、價格昂貴,離真正適合於大規模工業化低成本高品質的異質p-n接面太陽電池的生產還有一段距離.
為此,我們對西門子公司的設計加以改進,提出一套in-line sputter技術製造Cu-III-IV2薄膜太陽能電池的方案,即整個製程完全只利用sputter系統便可以完成.論文採用結構有Mo/p-CuInS2(p-CIS)/n-ZnS/n-ZnO和Mo/p-CuInS2(p-CIS)/n-ZnO 兩種, 吸收層材料採用對整個太陽光頻譜吸收效率極高的p-CIS,並選擇與CIS晶格常數十分匹配的ZnS來取代CdS 作為buffer layer,以減少對環境的污染,最後再用寬能隙的n-type ZnO作為window layer和導電層,藉著ZnO對日光的高穿透率和摻雜後的低電阻使(將)轉換效率得到最大限度的提升.
本論文利用單靶的radio frequency magnitron reactive sputter系統來成長上述各層薄膜與太陽能電池,透過多種量測分析技術,對各層薄膜的成分,結構,光電特性進行了分析,並對這些特性與薄膜成長參數之間的依賴關係進行了討論。量測發現,每單一層薄膜樣品的x-ray繞射譜上均只有單一peak出現,顯示各層的結晶性十分良好.藉著改變reactant gases的流量和基板溫度,可以妥善控制吸收層和窗口層薄膜的電阻率與成長速率.吸收層電阻率可以在8.4~1410Ω-cm之間有效控制,約有3個數量級的改變,在窗口層,電阻率更可以有5個數量級以上的改變.意味著太陽能電池元件的最重要的兩個特性--載子濃度和各層厚度均可透過基板溫度與反應氣體(的)流量的調整而作有效的控制. 我們目前在這套單靶(的)系統上已經做出了一個Mo/p-CuInS2(p-CIS)/ n-ZnS /n-ZnO(為)結構的異質接面p-n (PN) junction,並有些許的光電流產生,證明我們的構想是確實可行的.但元件的漏電流仍然過高,估計可能是由interface defect 和plasma damage的影響所造成。,日後藉著多靶sputter和快速熱退火(RTA)系統的建立,預期將使這些效應對元件的影響得到有效的減少,從而建立起真正適合與工業化大規模生產低成本高效率Cu-III-VI2薄膜太陽電池的工藝流程.

In the light of the concept of developing in-line sputter technique for manufacturing Cu-III-IV2 thin-film solar cells, this thesis investigates the preparation and characterization of the CuInS2 based solar cell devices by using full RF reactive sputtering method in our laboratory. Because the CBD method in the traditional Cu-III-IV2 film solar cell technology is not compatible with the standard deposition process in the ULSI fabrication and it will produce much toxic waste as well, in the viewpoint of the industrial production and the environment protection we use ZnS to replace CdS as the buffer layer and use reactive sputter to replace CBD for a less toxic waste and higher efficient production.
The structures of the studied device are p-i-n (Mo/ p-CuInS2 / n-ZnS /n-ZnO) and p-n (Mo/ p-CuInS2 / n-Al:ZnO) diode. The properties of each layer were measured by XRD, SEM, AES, EDX, and optical transmission analysis, resistivity. Each layer is almost the single phase as revealed in the diffraction patterns of XRD measurements. By varying the reactant gas flow rate, the composition, resistivity as well as other properties of the CuInS2 and ZnO films can be controled. For instance, the resistivity of CuInS2 layer is between 1.1~1410 Ω-cm, that of ZnO layer can vary from 1.6´10-1 to 2´103 Ω-cm, and so on. The J-V curve of the devices was measured by HP4156. Under illumination, a photon current of 32nA and photon Voltage of 0.16V has been detected on a device with the p-n diode structure. These results prove that our concept of in-line sputter for manufacturing CU-III-VI2 thin film solar cells is feasible. Although the conversion efficiency is still very poor now, it can be expected that the quality of every layer film and their interfaces can be improved effectively after using a RTP and a multi-target sputter system, and the device performance and the conversion efficiency can also be raised by optimizing the processing parameters in the not-long future.

Content
Chapter 1 Introduction………….………….…………………1
1-1 Principle of solar cells………….…………………………………1
1-1-1 Solar spectrum………...……………………………………..2
1-1-2 pn junction………….……..…………………………………3
1-1-3 Efficiency loss in solar cell…………………………………..5
1-2 Chalcopyrite semiconductor based solar cell…………………….6
1-2-1 Typical fabrication procedure and full in line concept……..6
1-2-2 Chalcopyrite material absorber layer……….……………….8
1-2-3 Buffer layer…………………………………………………..9
1-2-4 Window layer………………………………………………..10
Chapter 2 Experiments………………………………………12
2-1 Sputter Deposition Theory………………………………………12
2-1-1 Physics of RF sputter……………………………………….13
2-1-2 Reactive Sputter…………………………………………….14
2-2 Experiment system……………………………………………….14
2-3 Experimental procedures………………………………………..15
Chapter 3 Results and discussion (I)………….………17
3-1 p-type Cu-rich CuInS2 thin films prepared by reactive sputtering17
3-2 Zinc sulfide thin films prepared by reactive sputtering………….19
3-3 n-type Zinc Oxide thin films prepared by reactive sputtering……21
3-3-1 Metal target………………………………………………....21
3-3-2 ZnO/Al2O3 target……………………………………………23
Chapter 4 Results and discussion (II)………………..26
4-1 PIN structure character( D1~D6)……………………………….26
4-2 PN structure character(D7~D9)………………………………...28
Chapter 5 Conclusions……………………………………..30
Tables……………………………………………………………………32
Figures………………………………………………………………….34
References………………………………………………………………68

Reference
1. Tokio Nakada, Keisuke Furumi, and Akio Kunioka, ”High-Efficiency Cadmium-Free Cu(In,Ga)Se Thin-Film Solar Cells with Chemically Deposited ZnS Buffer Layers”,IEEE Transactions Electron Device, 46 (1999) pp2093-2097
2. A. Ennaoui, S. Siebentritt, M.Ch. Lux-Steiner, W. Riedl,F. Karg, “High- efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers”, Solar Energy Materials & Solar Cells 67 (2001) pp31-40
3. D.Braunger, Th. Durr, D. Hariskos, and H.W. Schock, “Improved open circuit voltage in CuInS2-based solar cells”, 25th PVSC, Washington, D.C 1996, pp1001-1004
4. D.Braunger, Th. Durr, D. Hariskos, T. Walter, and H.W. Schock, “An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer” Solar Energy Materials & Solar Cells 40 (1996) pp97-102
5. A. Neisser, I. Hengel, R. Klenk, Th.W. Matthes, J. Alvarez-Garcia, A. Perez-Rodriguez, A. Romano-Rodriguez, M.-Ch. Lux-Steiner,“Effect of Ga incorporation in sequentially prepared CuInS2 thin film absorbers”, Solar Energy Materials & Solar Cells 67 (2001) pp97-104
6 Y Yamamoto, T.Yamaguchi, T.Tanaka, N.Tanahashi and A.Yoshida, “ Characterization of CuInS2 thin films prepared by sputtering from binary compounds”, Solar Energy Materials & Solar Cells 49 (1997) pp399-405
7. R.W. Miles, K.T. Ramakrishna Reddy and I. Forbes, “Formation of polycrystalline thin films of CuInS2 by a two step process”. Journal of Crystal Growth 198/199 (1999) 316—320
8.T.Nakabyashi, T.Miyazawa, Y.Hashimoto and K.Ito, “Over 10%efficient CuInS2 Solar cell by sulfurization”, Solar Energy Materials & Solar Cells 49 (1997) pp375-381
9. Kai Siemer, Jo Klaer, Ilka Luck, Jurgen Bruns, Reiner Klenk,
and Dieter Braunig, “Efficient CuInS2 solar cells from a rapid thermal
process (RTP), Solar Energy Materials & Solar Cells 67 (2001) pp159-166
10. Kikuo Tominaga, Takakazu Murayama, Ichiro Mori, Tomoko Ushiro,
Toshihiro Moriga and Ichiro Nakabayashi, “Effect of insertion of thin ZnO layer in transparent conductive ZnO:Al film”. Thin Solid Films 386 (2001) pp267-270
11.Katsumi Kushiya, Baosheng SANG, Daisuke Okumura and Osamu Yamase, “Application of Stacked ZnO Films as aWindow Layer to Cu(InGa)Se2-Based Thin-Film Modules”. Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 3997—4001
12. K. Tominaga, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi, “Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets”, Thin Solid Films 334 (1998) pp35-39
13. T. Negami et al., Presented in the 11th International Photovoltaic. Science and Engineering Confenrence, 1999, Sapporo
14. 鍾堂軒,國立清華大學電子工程研究所碩士論文 89年
15. 余濟時,國立清華大學電機工程研究所碩士論文 85年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊