跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝明玹
研究生(外文):Ming-Hsuan Hsieh
論文名稱:利用光輔助化學氣相沉積技術在低溫下製作VLSI銅連接之銅膜
論文名稱(外文):The Study of Cu Films Deposited by Photo-Assisted CVD at Low Temperature
指導教授:黃惠良黃惠良引用關係
指導教授(外文):Huey-Liang Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:50
中文關鍵詞:銅製程化學氣相沉積光輔助
外文關鍵詞:CVDcopperCu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著元件的尺寸縮小到0.5um以下,多層次的內接導線結構變得更加複雜,而且導線本身也變得更薄更窄。先前所使用的鋁內接導線將面臨高性能和內接導線可靠度的問題。在積體電路中,對於導線的低電阻與更好的可靠度之需求也大大的提高。由於銅具備低電阻和優良的抗電致遷移特性,因而銅被認為是最適合用來取代鋁的金屬。
在各種的沉積方法中,銅的化學氣相沉積法(CVD)被認為是一種有希望的沉積技術。即使是在高深寬比的小洞中,仍然具有優良的保角階梯覆蓋能力。然而,由於作為反應來源的有機金屬材料產生的汙染,由化學氣相沉積方式所鍍的銅膜多半具有高電阻率。
我們已知在較低的成長溫度下,銅膜的汙染會下降。因此在此文中,我們使用光輔助化學氣相沉積法(photo-assisted CVD)在低溫下成長CVD銅膜。在我們的研究中,我們證明了在低溫(~100℃)下利用光輔助化學氣相沉積法沉積銅膜的可行性。在此文中,藉由使用輝光放電儀(GDS),我們證明了在低溫(~100℃)下利用光輔助化學氣相沉積法沉積銅膜可使碳含量變低,同時也得到了較低的電阻率。同時,我們也更進一部地利用X光繞射分析儀、α-stepper、掃描式電子顯微鏡等儀器來分析光輔助化學氣相沉積法沉積的銅膜,來調查其晶相、電阻率、成長速率、溼蝕刻速率、階梯覆蓋及填洞能力,另外也比較了傳統CVD與光輔助CVD的可靠度,使我們的研究能更加完備。

Abstract (in Chinese)…………………………………………………………….…....A
Abstract (in English)…………………………………………………………………..B
Acknowledgement (in Chinese)………………………………………………………C
Contents………………………………………………………………………………..i
Table caption…………………………………………………………………...……..iii
Figure caption…………………………………………………………………………iv
Chap1 Introduction………………………..…………………………………………..1
1-1 Characteristic of copper……………………………………………………..1
1-2 Methods of Copper Deposition……………………………………………...3
Chap2 System Configuration of Cu CVD …………………………………………….8
2-1 Basic Properties of Copper CVD Precursor …………………………………8
2-2 The Reactor Design ………………………………………………………...10
2-3 Metal-Organic Source Delivery ……………………………………………11
2-4 Our Photo-assisted CVD system Design …………………………………...11
Chap3 Experimental..…………………………………………………………….…..16
3-1 Introduction ………………………………………………………………...16
3-2 Mercury (Hg) Lamp Information…………………………………………..17
3-3 Samples and Quartz Tube Cleaning………………………………………..17
3-4 The Metrology Tools ……………………………………………………….18
3-4-1α-stepper …………………………………………………………….18
3-4-2 four-point probe …………………………………………………….19
3-4-3.X-ray diffraction analysis (XRD)…………………………………..19
3-4-4.Glow Discharge Spectrometer (GDS) ……………………………...19
3-4-5.Scanning Electron Microscopy (SEM) …………………………….19
3-4-6.HP-4156 …………………………………………………………….20
3-5 Sample Preparation and Test Structures for Reliability Test ………………20
Chap4 Results and discussion……………………………………………………… 25
4-1.Resistivity………………………………………………………………… 25
4-2.Growth Rate………………………………………………………………..26
4-2-1 Growth Rate for Different Substrates ………………………………27
4-2-2 Growth Rate for Different Sample Surface Preparation ……………27
4-2-3 Growth Rate vs. Sample Area ……………………………………...28
4-3 Wet etching rate ………………………………………………………28
4-4 XRD Analysis ………………………………………………………...29
4-5 GDS analysis ………………………………………………………….30
4-6 Step Coverage and Hole filling ability by SEM ……………………...30
4-7 Comparison of Reliability Test between Conventional CVD and Photo-assisted CVD Cu films ……………………………………….31
Chap5 Conclusion….………..…………………………………………………….…46

[1] V.Arita, Semiconductor World, December (1993) 158.
[2] J.D. McBrayer, R. M. Swanson, and T. W. Sigmon, J. Electronchem. Soc., 133,1242(1986)
[3] Y. Shacham-/Diamond, A. Dedia, D. Hoffsterr, and W. G. Oldham, J.Electrochem. Soc., 140,2427(1993).
[4] G. Raghavan, C. Chiang, P. B. Anders, S. M. Tzeng, R. Villasol, G. Bai, M.Bohr, and D. B. Fraser, Thin Solid Films, 262, 168(1995).
[5] R. J. Contolini, et al.,” Copper electronplating process for sub-half-micro ULSI structures,” Proceedings of the 12th International VLSI Multilevel Interconnection Conference, pp. 322-330, June 1995(IEEE, New York, 1995)
[6] Moshier, R. W. Sievers, R. E. GasChromatograpy of Metal Chelates, Pergamon, Oxford, 1965.
[7] Sievers, R. E. Sadlowski, J. E. Science 1978,201,217
[8] Wei W Lee, Peter S. Locke, “ Hydrogen-atom assisted CVD of copper at low temperature and in-situ gas-phase spectroscopy studies,” Thin Solid Films, 262,39-45,1995
[9] Fine, S. M; Dyer, P. N.; Norman, J. A. T.; Muratore, B. A.; Iampietro, R. L. Mater. Res, Soc. Syem. Proc. 1990, 204,415.
[10] Alain E. Kaloyeros, Bo Zheng, Ishing Lou, Janice Lau, John W. Hellgeth, “ In situ mass spectral and IR studies of the role of auxiliary reagents in the enhancement of copper growth in the chemical vapor deposition of Cu(II ) β-diketonate precursor,” Thin solid films, 262,20-30, 1995.
[11] Mehul B. Naik, William N Gill, Robert H. Wentorf, Robert R. Reeves,” CVD of copper using copper(I) and copper(II) β-diketonates” Thin Solid films,262, 60-66,1995.
[12] G. Friese, A. Abdul-hak, B. Schwierzu. U.Höhne, “Influence of processing parameter on the selectivity in a CVD-process if copper using Cu(I)(hfac)(TVMS),” Microelectronic Engineering, 37/38, 157-13,1997.
[13] Stephan Riedel*, Jurgen Rober, Thomas Geβner, “ Electrical properties of copper films produced by MOCVD”, Microeletronic Engineering 33, 165-172, 1997
[14] C. Marcadal, E. Richard, J.L. Mermet, J.Torres, J. Palleau, B Alaux, M. Bakli,”Cu-CVD optimized in a cluster equipment for IC manufacturing,” Microelectric Engineering 33, 3-13,1997
[15] Huey-Liang. Huang, Kun-Ceng Huang, ”The study of copper film deposited by photo-assisted CVD,” National Tsing Hua University, 2000.
[16] C.R. Rhy, A.L.S. Loke, T. Nagami, and S.S. Wong, in Proceeding of Advanced Metallization for ULSI Applications, p.201, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊