[1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233—1241, August 1996.
[2] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447—449, September 1997.
[3] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, May 1998.
[4] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, September 1998.
[5] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, November 1998.
[6] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, April 1999.
[7] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, November 2000.
[8] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, May 2001.
[9] B. Cheng et al., “The Impact of High-K Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, July 1999.
[10] B. H. Lee et al., “Ultrathin Hafnium Oxide with Low Leakage and Excellent Reliability for Alternative Gated Dielectric Application,” IEDM Tech. Dig., pp. 133-136, 1999.
[11] G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, no. 19, pp. 2854-2856, May 1999.
[12] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advance gate dielectrics,” J. Appl. Phys., vol. 87, no. 1, pp. 484-492, January 2000.
[13] B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol. 76, no. 14, pp. 1926-1928, April 2000.
[14] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly Reliable Ultrathin Hafnium Oxide Gate Dielectric,” IEEE Electron Device Lett., vol. 21, no. 4, pp. 181-183, April 2000.
[15] S. Lee et al., “High Quality Ultra Thin CVD HfO2 Gate Stack with Poly-Si Gate Electrode,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 31-34, 2000.
[16] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer Thin HfO2 Gate Dielectric with n+-Polysilicon Gate,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 44-45, 2000.
[17] L. Kanget al., “MOSFET Device with Polysilicon on Single-Layer HfO2 high-K Dielectrics,” IEDM Tech. Dig., pp. 35-38, 2000.
[18] B.H. Lee et al., “Characteristics of TaN gate MOSFET with ultrathin hafnium oxide (8A-12A),” IEDM Tech. Dig., pp. 39-42, 2000.
[19] H. Lee, S. Jeon, and H. Hwang, “Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2615-2617, October 2001.
[20] D. A. Neumayer, and E. Cariter, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001.
[21] A. Callegari, E. Cariter, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films,” J. Appl. Phys., vol. 90, no. 12, pp. 6466-6475, December 2001.
[22] T. Ma, et al., “Group IVB Metal Oxide High Permittivity Gate Insulators Deposited From Anhydrous Metal Nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001.
[23] K. Onishi et al., “Dopant Penetration Effects on Polysilicon Gate HfO2 MOSFET’s,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 131-132, 2001.
[24] S. J. Lee et al., “Performance and Reliability of Ultra Thin CVD HfO2 Gate Dielectrics with Dual Poly-Si Gate Electrodes,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 133-134, 2001.
[25] R. Choi et al., “High-Quality Ultra-thin HfO2 Gate Dielectric MOSFETs with TaN Electrode and Nitridation Surface Preparation,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 15-16, 2001.
[26] Y. Kim et al., “Conventional n-channel MOSFET device using single layer HfO2 and ZrO2 as high-k gate dielectrics with polysilicon gate electrode,” IEDM Tech. Dig., pp. 455-458, 2001.
[27] W. Zhu et al., “HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport,” IEDM Tech. Dig., pp. 463-466, 2001.
[28] C. Hobbs et al., “80nm Poly-Si Gate CMOS with HfO2 Gate Dielectric,” IEDM Tech. Dig., pp. 651-654, 2001.
[29] H. —J. Cho et al., “Novel Nitrogen Profile Engineering for Improved TaN/HfO2/Si MOSFET Performance,” IEDM Tech. Dig., pp. 655-658, 2001.
[30] K. Onishi et al., “Reliability Characteristics, Including NBTI, of Polysilicon Gate HfO2 MOSFET’s,” IEDM Tech. Dig., pp. 659-662, 2001.
[31] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-K dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002.
[32] B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing,” Appl. Phys. Lett., vol. 80, no. 13, pp.2368-2370, April 2002.
[33] P.D. Kirsch, C.S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100),” J. Appl. Phys., vol. 91, no. 7, pp. 4353-4363, April 2002.
[34] Joseph Ya-min Lee and Benjamin Chihming Lai, Handbook of Thin Films Material, edited by H. S. Nalwa, vol. 3: Ferroelectric and Dielectric Thin Films.
[35] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current Transport in Metal/Hafnium Oxide/Silicon Structure,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 97-99, February 2002.
[36] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757—2776, 1996.
[37] M.Balog, M.Schieber, M.Michman, and S.Patai, “Chemical Vapor Deposition and Characterization of HfO2 Films From Organo-Hafnium Compounds,” Thin Solid Films, vol. 41, pp. 247- 259, August 1997.
[38] S. M. Sze, Physics of Semiconductor Device, 2nd ed., Wiley, New York, 1981.
[39] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998.
[40] MRS BULLETIN, Alternative Gate Dielectrics for Microelectronics, vol. 27, no. 3, March 2002.
[41] Ernest M. Levin, Carl R. Robbins and Howard F. McMurdie; Margie K. Reser, editor, Phase diagrams for ceramists, American Ceramic Society, 1974.
[42] Note, “MOSFET Carrier Mobility Model Based on Gate Oxide Thickness, Threshold Voltage and Gate Voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996.
[43] Sorin Cristoloveanu, Hisham Haddara, and Nathalie Revil, “Defect Localization Induced by Hot Carrier Injection in Short Channel MOSFETs: Concept, Modeling, and Characterization,” Microelectro. Reliab. , vol. 33, no. 9, pp. 1365-1385, 1993.
[44] A. S. Grove And D. J. Fitzgerald, “Surface Effects on p-n Junctions: Characteristics of Surface Space-Charge Regions Under non-Equilibrium Conditions ,” Solid-Electronics Pergamon press, vol. 9, pp. 783-806. 1966.
[45] P. U. Calzolari And S. Graffi, “A Theoretical Investigation on The Gernation Current In Silicon p-n Junctions Under Reverse Bias,” Solid-State Electronics, vol.15, pp. 1003-1011, 1972.
[46] T. Giebel and K. Goser, “Hot-Carrier Degradation of n-Channel MOSFET’s Characterized by a Gated-Diode Measurement Technique,” IEEE Electron Device Lett., vol. 10, no. 2, pp. 76-78, February 1989.
[47] P. C. T. Roberts And J. D. E. Beynon, “An Experimental Determination Of The Carrier Lifetime Near The Si-SiO2 Interface,” Solid-State Electronics, Vol.16, pp. 221-227, 1973.
[48] 賴志明,應用於金氧半電晶體閘極氧化層的氧化鉭薄膜電性之研究,國立清華大學博士論文,民國九十年六月。[49] 余錦旗,金屬/氧化鉭/半導體場效電晶體的試製與電性分析,國立清華大學碩士論文,民國八十八年六月。