跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯俊明
研究生(外文):Chun-Ming Tang
論文名稱:0.35μmCMOS1.25Gbps光纖通訊用後制放大器最佳化設計
論文名稱(外文):Optimal Design of 1.25Gbps Post-amplifier for Optical Communication in 0.35μm CMOS Technology
指導教授:徐永珍徐永珍引用關係
指導教授(外文):Klaus Yung-Jane Hsu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:後制放大器限制放大器主動式電感光纖通訊增益級最佳化
外文關鍵詞:post-amplifierlimiting amplifieractive inductorsfiber optical communicationgain stage optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
光纖通訊在廣域區域網路(WAN)和區域網路(LAN)占有極重要的地位。而未來的趨勢將激發朝向低成本、低功率消耗的積體化收發機。而此機體化收發機整合了接收機和發送機兩種功能於同一晶片上。在這篇論文,我們將重點放於接收機上。後制放大器(post-amplifier)在光纖接收機上是一個關鍵的區塊,主要的功能是將一振幅變動之訊號放大至飽和穩定的訊號給資料時脈回覆電路(clock and data recovery circuits) 。為了達到降低光纖收發機的成本,這篇論文提出一1.25Gbps後制放大器採用0.35μm CMOS 製程。
這篇論文提出一新的可調loss-of-signal,可以維持位元錯誤率(BER)的表現。根據所需的增益頻寬乘積和最小的功率消耗之增益級最佳化的方法也會討論。此外為了增加後制放大器的3dB頻寬,這次的工作採用了Shunt peaking的技術加入電感於增益級的負載,將寄生電容所產生的極點移往更高頻率,而利用主動式電感取代螺旋式電感的電路技巧也會探討。在後制放大器常碰到的一個振幅變化造成相位變化(AM-PM Conversion)的現象在此論文中也會描述。最後在此論文中所提出的可調loss-of-signal之電路區塊將簡單的介紹其電路技巧。
在這次的研究中,所提出之後制放大器採用了新設計之增益級,操作於3.3V可以達到4mVp-p的最小敏感度、47dB的電壓增益、1.52GHz的頻寬以及暫態響應如AM-PM Conversion和輸出波型之上升下降時間。在模擬結果可以符合甚至超過 IEEE 802.3z (Gigabit Ethernet)的規格。

Optical communication has played an important role in wide area networks (WAN) and local area networks (LAN). The trend motivates on low-cost low-power fully integrated transceiver. The transceiver integrates both transmitter and receiver function into a single chip. Here the receiver is focused on. A critical task in such receivers is post-amplifier that enlarges the amplitude-varying signal into the saturation level and provides stable signal for the clock and data recovery circuits (CDR). For the sake of achieving cost-down of optical transceiver, this thesis proposes a 1.25Gbps post-amplifier by using 0.35μm CMOS technology.
This thesis presents a new loss-of-signal function with programmable input-signal level detection to maintain bit-error-rate (BER) performance. Furthermore, the method of gain stages optimization is addressed in this thesis.
In this work, the proposed post-amplifier employs novel gain cells to achieve an input sensitivity 4mVp-p, 47dB conversion gain and 1.52GHz bandwidth operating at 3.3V. And the simulated electrical characteristics achieve or meet the specifications of IEEE 802.3z (Gigabit Ethernet).

Content
Abstract ………………………………………………………………… i
Content ………………………………………………………………... iii
Acknowledgements ……………………….………………………….…v
List of Figures ………………………………………………...….…… vi
List of Tables ………………………………………...……….……… viii
Chapter1 Introduction ……………………………………………… 1
1.1 Motivation and Goal ……………………………………………………… 1
1.2 Thesis Organization ………………………………………………………. 2
Chapter2 Optical Transmission System …………………………… 4
2.1 Advantages of Transmission System ……………………………………... 4
2.2 Optical Transmission Evolution ………………………………………….. 6
2.3 Fiber Optical Data Communication Link ………………………………… 8
Chapter3 Design of Post-amplifier Architecture …………………. 11
3.1 Introduction …………………………………………………………….. 11
3.2 Post-amplifier Architecture Design …………………………………….. 12
3.3 AGC V.S. Limiting Amplifier …………………………………………... 13
3.4 Gain Stage Optimization ……………………………………………….. 15
3.5 Offset Cancellation Circuit …………………………………………...… 20
3.6 Loss-of-Signal Function ………………………………………………... 23
Chapter4 Circuit Techniques for Proposed Post-amplifier
with PECL Data Outputs ……………………………… 25
4.1 Introduction …………………………………………………………….. 25
4.2 Gain Cells with Active Inductors ………………………………………. 26
4.2.1 Active Inductors ………………………………………………….. 28
4.2.2 Gain Cells ………………………………………………………… 31
4.3 Slicer Cells …………………………………………………………...… 32
4.4 PECL-level Compatible Output Buffer ………………………………… 33
4.5 Rectifier ………………………………………………………………… 34
4.6 Comparator …………………………………………………………...… 35
4.7 Shedding on AM-PM Conversion Effects Associated with Bandwidth ... 36
4.8 Simulation Results ……………………………………………………… 39
Chapter5 Experiment Prototype and Measurement Results ……. 47
5.1 Prototype ……………………………………………………………….. 47
5.2 Measurement Results …………………………………………………... 49
Chapter6 Conclusion ………………………………………………. 51
Bibliography ………………………………………………53

[1] Po-Chiun Huang, Chen-Yi Huang, and Chorng-Kuang Wang, “ A 155-MHz BiCMOS Automatic Gain Control Amplifier,” IEEE Transactions on Circuits and Systems, vol. 46, pp. 1920-1922, no. 5, May 1999.
[2] J. Hauptmann, F. Dielacher, R. Steiner, C. C. Enz and F. Krummenacher, “ A Low-Noise Amplifier with Automatic Gain Control and Anticlipping Control in CMOS Technology,” IEEE J. Solid-State Circuits, vol.27, pp. 974-981, Dec. 1992.
[3] R. Reimann and H.M. Rein, “ Bipolar High-Gain Limiting Amplifier IC for Optical Fiber Receivers Operating Up to 4Gbit/s,” IEEE J. Solid-State Circuits, vol. 22, pp. 504-511, Aug. 1987.
[4] Y. M. Greshishchev and P. Schvan, “ A 60-dB Gain, Dynamic Range, 10-Gb/s Broad-Band SiGe HBT Limiting Amplifier,” IEEE J. Solid-State Circuits, vol. 34, pp. 1914-1920, Dec. 1999.
[5] Thomas H.Lee, Stanford University, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 1998
[6] R. P. Jindal, “ Gigahertz-band high-gain low-noise AGC amplifiers in fine-line nMOS,” IEEE J. Solid-State, vol. Sc-22, pp.512-521, Aug. 1987.
[7] Po-Chiun Huang, Chen-Yi Huang, and Chorng-Kuang Wang, “ A 2-V 10.7MHz CMOS Limiting Amplifier/RSSI,” IEEE J. Solid-State Circuits, vol.35, no. 10, Oct. 2000.
[8] Maxim Integrated Products. (2000) MAX3269 3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers.
[9] Stephen B. Alexander, Ciena Corporation, “Optical Communication Receiver Design,” SPIE Optical Engineering Press, 1997.
[10] S. Hara, T. Tokumitsu, T. Tanaka and M. Aikawa, “ Broad-Band Monolithic Microwave Active Inductor and Its Application to Miniaturized Wide-Band Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 12, Dec. 1988.
[11] E. A. M. Klumperink, C. T. Klein, B. Ruggeberg, E. J. M. Aan Tuijl, “AM Suppression with Low AM-PM Conversion with Aid of a Variable Gain Amplifier,” IEEE J. Solid-State Circuits, vol. 33, pp 625-633, May 1996.
[12] T. Yoon and B. Jalali, “Front-end CMOS Chipset for Fiber-based Gigabit Ethernet,” in Symp. VLSI Circuits Dig. Tech. Papers, Feb. 1998.
[13] J. Savoj and B. Razavi, “A CMOS Interface Circuit for Detection of 1.2-Gb/s RZ Data,” ISSCC Dig. Dig. Tech. Papers, pp. 278-279, Feb. 1999.
[14] E. Sackinger and W. C. Fisher, “ A 3 GHz 32 dB CMOS Limiting Amplifier for SONET OC-48 Receives,” IEEE J. Solid-State Circuits, vol. 35, no. 12, Dec. 2000.
[15] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “An Integrated CMOS Distributed Amplifier Utilizing Packaging Inductance,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1969-1976, Oct.1997.
[16] B. Ballwebber, R. Gupta, and D. J. Allstot, “ Fully Integrated CMOS RF Amplifiers,” ISSCC Dig. Tech. Papers, pp.72-73, Feb. 1999.
[17] B. Keleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee and S. S. Wong, “Monolithic CMOS Distributed Amplifier and Oscillator,” ISSCC Dig. Tech. Papers, pp.70-71, Feb. 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top