跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉環彰
研究生(外文):Huan-jang Liu
論文名稱:鋯鈦酸鉛電容器與溫度相關漏電流機制與負電阻分析
論文名稱(外文):The mechanisms of the temperature dependent leakage current and negative resistance effect of lead zirconate Pb(Zr,Ti)O3 thin film capacitor
指導教授:李雅明李雅明引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:鋯鈦酸鉛漏電流機制負電阻
相關次數:
  • 被引用被引用:0
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PZT鐵電薄膜電容器是利用射頻磁控濺鍍法(RF magnetron sputtering)濺鍍而成,再經由700℃的氧氣快速熱退火處理,以金為上電極,鉑為下電極製作出MIM(Metal/Insulator/Metal)電容結構。
PZT鐵電薄膜電容器的基本電性,I-V量測方面在電場強度100 kV/cm時漏電流大小為6.26X10-7 A/cm2,在室溫下崩潰電場強度約1.2 MV/cm,在C-V量測方面,在頻率1 kHz時介電常數為342,在頻率1 Mhz時介電常數為235,對於使用時記憶體電容器的應用,這樣的介電常數值已經相當足夠了。
電流機制上可以用溫度區分為兩個部分,第一個溫度區間在溫度範圍300 K到400 K之間,電場強度低於150kV/cm以下是歐姆接觸,電場強度高於150 kV/cm電流機制為SCLC,第二個區間是溫度在400 K到500 K之間,低電場是歐姆接觸,高電場時電流機制是蕭基發射,PZT因氧缺而呈現n-type,因為PZT的能隙大小為3.5 eV,因此在室溫下PZT內的載子並未完全游離,考慮此因素可以得到溫度500 K時的費米能階會比溫度300 K更接近本質費米能階,並畫出溫度300 K及500 K的Au/PZT/Pt的能帶圖。
在預先施加一反向偏壓下,在低電場區有一明顯的負電阻現象,此負電阻現象受反向偏壓值、延遲時間值、反向偏壓時間、測量溫度值等影響,此負電阻現象據實驗結果可知是極化電流,溫度上升時仍可以觀察到負電阻現象,但在溫度高於450 K時因為極化量減小與真實電流上升而消失,在反覆量測此現象後,此現象會降低且消失。

第一章 緒論
1.1鐵電薄膜的概況與應用 2
1.2鐵電薄膜(PZT)的可靠度問題 3
第二章 鈦鋯酸鉛(PZT)相關理論
2.1鐵電材料的結構 5
2.2巨觀鐵電相變的藍道理論(Landau-Devonshire Theory) 7
第三章 PZT薄膜電容器的製備
3.1基板及下電極之製作 9
3.2 PZT薄膜的製作 10
3.3上電極的製作 11
第四章 PZT薄膜電容器基本電性量測
4.1極化強度-電場(P-E)量測 12
4.1.1 PZT薄膜電容器基本(P-E)量測
4.1.2 PZT薄膜電容器振幅效應
4.2 C-V量測 13
4.2.1 電容值的頻率響應
4.2.2 電容值的溫度效應
4.3 I-V(電流-電壓)量測 15
4.4 I-t(電流-時間)量測 16
第五章 漏電流機制探討與溫度效應
5.1電流傳導機制簡介 17
5.1.1 空間電荷限制電流
5.1.2 蕭基發射
5.1.3 普爾-法蘭克效應
5.2各種溫度下電流對電壓特性量測分析 21
5.2.1 溫度300 K到400 K電流機制
5.2.2 溫度 400 K到500 K電流機制
5.3 能帶圖 23
第六章 鐵電PZT薄膜電容器的負電阻效應分析
6.1 負電阻效應簡介 25
6.2 負電阻特性量測分析 27
6.2.1 室溫下I-V曲線
6.2.2 不同溫度下的I-V曲線
6.2.3 負電阻現象減弱
第七章 結論 29
Reference

第一章
[1] R. Moazzami, “electrical characteristics of ferroelectric PZT thin films for DRAM applications”, IEEE Trans. Elec. Devices, vol. 39, no. 9, p. 2044, 1992.
[2] S. Kimura, “a new stacked capacitor DRAM cell characterized by a storage capacitor on a bit-line structure”, IEDM, Proc., p. 596, 1988.
[3] B. W. Shen, “scalability of a trench capacitor cell for 64 Mbit DRAM”, IEEE IEDM Tech Digest, p. 27, 1989.
[4] S. O. Park, “Fabrication and electrical characterization of Pt/BST/Pt capacitors for ultralarge integrated dynamic random access memory applications”, Jap. J. Appl. Phys., vol. 35, p. 1548, 1996.
[5] T. Kada, “process and device technologies for 1 Gbit dynamic random-access memory cells”, Vac. Sci. Tech. B 13(6), 1995.
[6] T. Eimori, “a newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM”, IEDM, vol. 93, p. 631.
[7] S. Sinharoy, H. Buhay, D. R. Lampe, J. Vac. Sci. Tec., A 10, p. 1554, 1992.
[8] D. W. Bondurant, Ferroelectrics, vol. 112, p.273. 1990.
[9] D. W. Bondurant and F. P. Gnadinger, IEEE Spectrum 30, 1989.
[10] J. T. Evans, R. I. Suizu, “1998 International Nonvolatile Memory Technology Conference”, p. 26.
[11] J. T. Evans, R. Womack, IEEE J. Solid State Circuit, vol. 23, p.1171, 1991.
[12] W. A. Geideman, IEEE Trans. Ultra. Ferro. Freq. Cont., vol. 38, p. 704, 1991.
[13] R. E. Jones, “IEEE 1998 custom integrated circuits conference”, p. 431.
[14] W. Kraus, L. Lehman, D. Wilson, “IEEE 1998 custom integrated circuits conference”, p. 242, 1998.
[15] E. M. Philofsky, “1996 international nonvolatile memory technology conference”, p. 99, 1996.
[16] D. Dimos, W. L.Warren, and H. N. Al-Shareef, in “thin film ferroelectric materials and devices,” (R. Ramesh, Ed.), Kluwer Academic, Boston, p. 199, 1997.
[17] J. F. Scott, C. A. Araujo, B. M. Meadows, J. Appl. Phys., vol. 70, p. 382, 1991.
[18] B. M. Melnick, J. F. Scott, C. A. Paz , Ferro., vol. 135, p. 163, 1992.
[19] J. Lee, R. Ramesh, V. G. Keramidas, Appl. Phys. Lett., vol. 66, p. 1337, 1995.
[20] Z. G. Zhang, J. S. Liu, Y. N. Wang, J. Appl. Phys., vol. 85, p. 1746, 1999.
第二章
[1] R. H. Lyddane, Sachs, Teller, “on the polar vibrations of Alkali Halides”, Phy. Rev., vol. 59, p. 673.
[2] J. F. Scott, “Ferroelectric Memory”, Springer.
[3] 鍾維烈,“鐵電物理學”, 科學出版社, 1998.
第三章
[1] E. Cattan, “structure control of PZT buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., vol. 70, p. 31, Mar. 1997.
[2] O. Auciello, A. I. Kingon , S. B. Krupanidhi, “sputter Synthesis of ferroelectric films and heterostructures”, MRS BULLETIN, p. 25, 1996.
[3] L. Wang, “properties of PbZrTiO3 T\thin films preapred By R.F. magnetron sputtering and heat treatment,” Mat. Res. Bull., vol.25, p. 1495, 1990.
[4] V. Chikarmane, “effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors”, J. Vac. Scl. Technol., A 10(4), 1992.
[5] H. Nakasima, “electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition”, Jap. J. Appl. Phys., vol. 33, p. 5139, 1944.
[6] C. M. Foster, “single-crystal PZT thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys. vol. 81, 1997.
[7] H. Miki and Y. Ohji, “uniform ultra-yhin Pb(Zr,Ti)O3 films formed by Metal-Organic Chemical Vapor Deposition and their electrical characteristics”, Jan. J. Appl. Phys., vol. 33, p. 5143, 9B, 1994.
[8] E. Cattan, “structure control of PZT buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., vol. 70(13), p. 31, 1997.
[9] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “sputter Synthesis of ferroelectric films and heterostructures”, MRS BULLETIN, p. 25, 1996.
[10] K. Sreenivas, “investigation of Pt/Ti bilayer metallization on Silicon for ferroelectric thin film integration”, J. Appl.Phys., vol. 75(1), p. 232, 1994.
[11] J. Chen, “crystallization dynamics and rapid thermal processing of PZT thin films,” Mat. Res. Soc. Symp. Proc., vol. 243, 1992.
[12] Chi K. Kwok, “effect of thermal processing conditions on ferroelectric PZT Thin Films”, Mat. Res. Soc. Symp. Proc., vol. 200, p.83, 1990.
[13] Fred Roozeboom, “rapid thermal processing systems: a review with emphasis on temperature control”, J. Vac. Sci. Technol., B 8(6), p. 1249, 1990.
第4章
[1] 李雅明, “固態電子學” , p. 165.
[2] 鍾維烈, “鐵電體物理學”, 附錄III.
[3] H. Nakasima, “electrical properties for capacitors of dynamic random access memory on PLZT thin films by metal-organic chemical vapor deposition”, Jap. J. Appl. Phys., vol. 33, p. 5139, 1994.
[4] C.M Foster, “single-crystal PZT thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties”, J. Appl. Phys., vol. 81(5), 1997.
[5] H. Miki, and Y. Ohji, “uniform ultra-thin Pb(Zr,Ti)O3 films formed by Metal-Organic Chemical Vapor Deposition and their electrical characteristics”, Jap. J. Appl. Phys., vol. 33, p. 5143, 1994.
[6] O. Auciello, A. I. Kingon, S. B. Krupanidhi, “sputter synthesis of ferroelectric films and heterostructures”, MRS BULLETIN, p. 25. 1996.
第五章
[1] H. M. Chen, S. W. Tsaur, J. Y. Lee, Jap. J. Appl. Phys., vol. 37, p. 4056, 1998.
[2] S. M. Cho, D. Y. Jeon, “effect of annealing conditions on the leakage current characteristics of ferroelecric PZT thin films grown by sol-gel process”, Thin Sold Films, p. 338. 1999.
[3] H. Hu and S. B. Krupanidhi, J. Mater. Res., vol. 9, p. 1484. 1994
[4] T. K. Kundu, J. Y. Lee, J. Electrochem. Soc., vol. 147, p. 326, 2000.
[5] C.W. Law, K.Y. Tong , J. H. Li, “leakage current in PZT films with sputtered RuOX electrodes”, Solid State Electronics, vol. 44, p. 1569, 2000.
[6] T. Mihara, and H. Watanabe, Jap. J. Appl. Phys., vol. 34, p. 5664, 1995.
[7] R. Moazzami, C. Hu, W. H. Shepherd, IEEE Trans. Electron Devices, vol. 39, p. 2044. 1992.
[8] B. Nagraj, S. Aggarwal , T. K. Song, “leakage current mechanisms in lead based thin film ferroelectric capacitors”, Phys. Rev. B, vol. 59, 1999.
[9] J. F. Scott, C. A. Araujo, B. M. Meadows, J. Appl. Phys., vol. 70, p. 382, 1991.
[10] J. C. Shin, C. S. Hwang, H. J. Kim, Appl. Phys. Lett., vol. 75, p. 3411, 1999.
[11] I. Stolichnov, A. K. Tagantsev, E. L. Colla, “Cold-field-emission test of the fatigued state of Pb(ZrxTi1.x)O3”, Appl. Phys. Lett., vol. 73, p. 1361, 1998.
[12] I. Stolichnov, A. Tagantsev, J. Appl. Phys., vol. 84, p. 3216, 1998.
[13] C. Sudhama, A. C. Campbell, P. D. Maniar, J. Appl. Phys., vol. 75, p. 1014, 1994.
[14] I. K. Yoo, S. B. Desu, “leakage current mechanism and accelerated unified test of lead zirconate titanate thin film capacitors”, IEEE, p. 225.
[15] Y. S. Hwang, S. H. Paek, J. P. Mah, J. Mater. Scie. Lett., vol. 15, p. 1039, 1996.
[16] 李雅明, “固態電子學”, 第十四章
[17] G. Yi, Z. Wu, M. Sayer, “preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties”, J. Appl. Phys., vol. 64, p. 2717, 1988.
[18] J. P. Mc Kelvey, “Solid state and semiconductor Physics”, Harper & Row, 1966.
第六章
[1] SZE, “physics of semiconductor devices”, Wileyinterscience.
[2] H. Kanter, W. A. Feibelman, “electron emission from thin thin Al-Al2O3-Au Structures ”, J. Appl. Phys., vol. 33, p. 3580, 1962.
[3] R. Ramirez, R. Gonzalez, R. Pareja, “semiconductor property of wide-band-gap oxide crystal: impact ionization and avalanche breakdown”, Physical Review B, vol. 55, no. 4, p. 2413, 1997.
[4] M. N. Khan, M. I. Khan, C. A. Hogarth,“electrical properties of GeO2 film”, Phys. Review B, vol. 22, no. 12, p. 6155, 1980.
[5] G. D. O’Clock, L. D. Feisel, “performance of Ta-Ta2O5-Au metal-insulator-metal devices”, Appl. Phys. Lett., vol.44, p. 642, 1984.
[6] H. Watanabe, T. Baba, M. Ichikawa,“characterization of local dielectric breakdown in ultrathin SiO2 films using scanning tunneling microscopy and spectroscopy”, J. Appl. Phys., vol. 85, p.6704. 1999.
[7] B. K. Ridley, R. G. Pratt, “hot electrons and negative resistance at 20 K in n-type germanium containing”, J. Phys. Chem. Solid., vol. 26, p.21, 1964.
[8] T. W. Hickmott, “impurity conduction and negative resistance in thin oxide films”, J. Appl. Phys., vol. 35, p. 2118, 1964.
[9] H. D. Chen, K. R. Udayakumar, “dielectric breakdown strength in sol-gel derived PZT thick films”, Integ. Ferro., vol. 15, p. 89, 1997.
[10] J. F. Scott, B. M. Melnick, J. D. Cuchiaro,“negative differential resistivity in ferroelectric thin-film current-voltage relationships”, Integ. Ferro., vol. 4, p. 85, 1994.
[11] J. F. Scott, C. A. Araujo, B. M. Melnick, “quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., vol. 70, p. 382, 1991.
[12] H. Wang, R. N. Singh, “crack propagation in piezoelectric ceramics: effects of applied electric fields”, J. Appl. Phys., vol. 81, p. 7471, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top