跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃怡碩
研究生(外文):Yi-Shuo Huang
論文名稱:升壓型交直流轉換器之誤差界定電流控制器
論文名稱(外文):ERROR BOUNDED CURRENT CONTROLLERS FOR AC/DC BOOST CONVERTERS
指導教授:潘晴財鐘太郎
指導教授(外文):Prof. Ching-Tsai PanProf. Tai-Lang Jong
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:159
中文關鍵詞:升壓型交流轉換器誤差界定電流控制器
外文關鍵詞:AC/DC BOOST CONVERTERSERROR BOUNDED CURRENT CONTROLLERS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於電力電子技術與半導體元件的快速發展,使現今各種電力轉換器的效能得以更進一步提升。而本論文研究的方向乃針對可變功因及具雙向功率潮流之升壓型交直流轉換器,研究如何進一步提升其整體性能。長久以來由於傳統磁滯電流控制器具有快速響應、實作電路簡單與限定電流誤差等優點,故已廣泛的使用,然而,傳統磁滯電流控制器仍然有許多值得改進與深入研究分析的地方。因此,本論文除提出保有傳統磁滯電流控制器之優點的低切換頻率電流控制器外,同時本論文也提出一通用分析方法來解析所提之電流控制器。特別是本論文中首度藉由所提之分析方法,將傳統三相磁滯電流控制器之電流誤差超出設定範圍的特殊現象加以完整的分析與澄清一些以往未曾瞭解之現象。根據此分析結果,本論文進一步提出一改良型電流控制器,可以保證其電流誤差將不會超出限定範圍外。
本論文另一重要貢獻在於能夠選擇適當時機加入零模控制來減少開關切換次數,進一步提高轉換器之整體效率與可靠度,並藉由通用分析方法建立其完整的理論基礎。本論文共提出四種不同的電流控制器,其中第一種與第二種為單相定頻取樣電流控制器,由於其定頻取樣的特性,因此特別適用於數位化實作;其中一種較適用於低電壓場合,而另一種則較適用於高電壓場合。第三種為最低切換頻率之單相誤差界定電流控制器,其特點為不論在高壓或低壓應用場合,均能獲得最低之切換頻率。接著,藉由延伸單相所獲得之結果,提出第四種三相誤差界定電流控制器。由於將原本單相一維的問題,變成三相二維之考量,因此其複雜度及困難度也更高。本文所提之誤差界定電流控制器,不僅使用到實際電流誤差信號,同時也利用到電流誤差導數的正負符號訊息,如此不需繁雜之誤差變化率計算即可獲得較佳之效能提升。最後更提供一些模擬與實驗結果以驗證所提之電流控制器的可行性。
Due to rapid progress of power electronics technology and power semiconductor devices, it is now possible to achieve a much better performance for various power converters. In this dissertation, the research topic is focused on the AC/DC boost converters with bi-directional power flow and with variable power factor. Owing to the fast response, easy implementation and with bounded errors for achieving a specified power quality, the conventional hysteresis current controller has been developed and widely used for long time. However, there still exists some drawbacks for further improvement and some theoretical analysis about certain peculiar phenomenon remains to be clarified. Hence this dissertation, starting from satisfying the basic characteristics of the conventional hysteresis current controller, tries to provide a unified methodology for analyzing the controllers considered in this dissertation. In fact, while applying this methodology to the three-phase case, some peculiar phenomenon about various error-bound-violation cases are now clarified and fully understood for the first time. As a result, an improved three-phase error bounded current controller is proposed to guarantee the satisfaction of a specified error bound
Another important contribution of the dissertation lies in the application of zero mode control at the proper time to further reduce the switching numbers of the converters to achieve better efficiency and reliability. Sound theoretical basis is presented and detailed analysis is also made by using the unified methodology. Totally, four current controllers are proposed. Among them, two single-phase controllers with constant sampling period are inherently suitable for digital implementation. One is more suitable for lower output voltage applications and the other is more suitable for higher output voltage applications. The third single-phase hysteresis controller, instead of using constant sampling period, is however proposed to achieve the minimum switching frequency by using the unified methodology. Finally a three-phase controller is also proposed by extending the previous single-phase result. Due to the two dimensional considerations, this extension process is not a trivial one at all. It is worth pointing out here that, instead of using only the information of the current errors, the proposed controller uses also the information of the sign of the current error derivatives without incurring extra calculations. Hence, better controller performance can be achieved without requiring too much extra efforts. Some simulation and experimental results are also given for verifying the feasibility of the proposed controllers.
CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
1. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Contribution of the Dissertation 4
1.4 Outline of the Contents 6
2. AN ERROR BOUNDED CURRENT CONTROLLER WITH BINARY-VALUE INNER BOUND 8
2.1 Introduction 8
2.2 Circuit Configuration and Basic Operation Principle 9
2.2.1 Model of the single-phase full-bridge boost converter 9
2.2.2 Basic operation principle 11
2.3 The Binary-Value Inner Bound Current Controller 14
2.4 An Illustration for Sinusoidal Waveform Case 18
2.5 Some Simulation and Experimental Results 22
3. AN IMPROVED ERROR BOUNDED CURRENT CONTROLLER WITH ADAPTIVE INNER BOUND 44
3.1 Introduction 44
3.2 The Adaptive Inner Bound Current Controller 44
3.3 An Illustration for Sinusoidal Waveform Case 49
3.4 Some Simulation and Experimental Results 52
4. THE MINIMUM SWITCHING FREQUENCY ERROR BOUNDED CURRENT CONTROLLER 67
4.1 Introduction 67
4.2 The Minimum Switching Frequency Control Strategy 68
4.2.1 Conventional hysteresis current control strategy 68
4.2.2 The minimum switching frequency current control strategy 71
4.3 An Implementation of the Proposed Current Control 83
4.4 Some Simulation and Experimental Results 86
5. AN IMPROVED THREE-PHASE ERROR BOUNDED CURRENT CONTOLLER 101
5.1 Introduction 101
5.2 Circuit Configuration and Current Error Derivative Vector 101
5.3 Analysis of the Conventional Three-Phase Hysteresis Current Controller 113
5.4 The Proposed Current Controller 123
5.5 Some Simulation Results 132
6. CONCLUSIONS 142
REFERENCES 145
APPENDIX A DERIVATION OF THE MAXIMUM VALUE OF TS A-1
APPENDIX B DATA SHEET OF PEEL 18CV8 B-1
APPENDIX C A CONSTANT HYSTERESIS-BAND CURRENT CONTROLLER WITH FIXED SWITCHING FREQUENCY C-1
REFERENCES
[1] IEC 61000-3-2 International Standard, Electromagnetic Compatibility (EMC)-Part3: Limits_section2: Limits for harmonic current emissions (equipment input current < 16 A per phase), International Electrotechnical Commission (IEC), Zurich, Switzerland, 1995.
[2] IEEE std. 519-1992, IEEE guide for harmonic control and reactive compensation of static power converters, the Institute of Electrical and Electronics Engineers, Inc.(IEEE), New York, USA, 1992.
[3] B. K. Bose, “Evaluation of modern power semiconductor devices and future trends of converters,” IEEE Trans. Industry Applications, vol. 28, no.2, pp. 403—413, May/Apr. 1992.
[4] B. K. Bose, “Power electronics-a technology review,” Proc. IEEE, vol. 80, no. 8, pp. 1301-1304, Aug. 1992.
[5] J. Holtz, “Pulse width modulation-a survey,” IEEE Trans. Industrial Electronics, vol. 39, no. 5, pp. 410-420, Dec. 1992.
[6] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Trans. Electronic Devices, vol. 43, no. 10, pp. 1717-1731, Oct. 1996.
[7] B. K. Bose, “Recent advances and trends in power electronics and drives,” IEEE Nordic Workshop on Power and Industrial Electronics, pp. 170-181, Aug. 1998.
[8] D. Divan and D. Boroyevich, “Future converters, circuits, and system integration,” IEEE Workshop on the Future of Electronic Power Processing and Conversion, pp. 327-333, 1998.
[9] H. Akagi, “The state-of-art of power electronics in Japan,” IEEE Trans. Power Electronics, vol. 12, no. 2, pp. 345-356, May 1998.
[10] B. K. Bose, “Energy, environment, and advances in power electronics,” IEEE Trans. Power Electronics, vol. 15, no. 4, pp. 688-701, July 2000.
[11] S. Bernet, “Recent developments of high power converters for industry and traction applications,” IEEE Trans. Power Electronics, vol. 15, no. 6, pp. 1102-1117, Nov. 2000.
[12] T. G. Habertler and R. G. Harley, “Power electronic converter and system control,” Proc. IEEE, vol. 89, no. 6, pp. 913-925, June 2001.
[13] G. B. Kliman and A. B. Plunkett, “Development of a modulation strategy for a PWM inverter drive,” IEEE Trans. Industry Applications, pp. 702-709, 1979.
[14] J. M. D. Murphy and M. G. Egan, “A comparison of PWM strategies for inverter-fed industion motors,” IEEE Trans. Industry Applications, pp. 363-369, 1983.
[15] M. P. Kazmierkowski and M. A. Dzieniakowski, “Review of current regulation methods for VS-PWM inverters,” IEEE International Symposium on Industrial Electronics, Budapest., pp. 448-456, 1993.
[16] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Industry Applications, vol. 21, no. 4, pp. 562-570, May/June 1985.
[17] B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Industry Appications, vol. 29, no. 5, pp. 902-909, Sep./Oct. 1993.
[18] J. Holtz, “Pulsewidth modulation for electronic power conversion,” Proc. IEEE, vol. 82, pp. 1194-1214, Aug. 1994.
[19] M. P. Kazmierkowski and M. A. Dzieniakowski, “Review of current regulation methods for VS-PWM inverters,” IEEE Industrial Electronics Conf., pp. 567-575, 1994.
[20] J. W. Dixon, S. Tepper, and L. Moran, “Analysis and evaluation of different modulation techniques for three-phase PWM inverter, ” IEEE Applied Power Electronics Conf., pp. 894-900, 1994.
[21] A. M. Trzynadlowski, “An overview of modern PWM techniques for three-phase voltage controlled, voltage-source inverters,” IEEE International Symposium on Industrial Electronics, Warsaw Poland, pp. 25-39, 1996.
[22] Z. Yu, A. Mohammed, and I. Panahi, “A review of three PWM techniques,” Proc. American Control Conference, vol. 1, pp. 257-261, June 1997.
[23] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 691-703, Oct. 1998.
[24] S. Buso, L. Malesani, and P. Mattavelli, “Comparison of current control techniques for active filter applications,” IEEE Trans. Industrial Electronics, vol. 45, no. 5 , pp. 722—729, Oct. 1998.
[25] M. E. Habrouk, M. K. Darwish, and P. Mehta, “Active power filters: a review,” IEE Proc. Electric Power Applications, vol. 147, no. 5, pp. 403-413, Sep. 2000
[26] E. Gaio, R. Piovan, L. Malesani, “Comparative analysis of hysteresis moudlation methods for VSI current contrl,” 3th Power Electronics and Variable-Speed Drives, pp. 336-339, 1988.
[27] S. S. Park and G. H. Cho, “A direct rotor flux controlled induction motor drive for high performance applications,” IEEE Power Electronics Specialists Conf., vol. 1, pp. 279-286, 1989.
[28] A. Tripathi and P. C. Sen, “Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters,” IEEE Trans. Industrial Electronics, vol. 39, no. 1, pp. 63-73, Feb. 1992.
[29] K. Tungpimolrut, M. Matsui, and T. Fukao, “A simple limit cycle suppression scheme for hysteresis current controlled PWM VSI with consideration of switching delay time,” IEEE Industry Applications Conf., vol.1, pp. 1034-1041, 1992.
[30] M. A. Choudhury, K. M. Rahman, M. A. Rahman, and A. R, Bhuiya, “Hysteresis current controlled PWM converter for AC/AC voltage control,” Electrical and Computer Engineering Conf., Canadian, pp 431-434, 1997.
[31] L. Malesani, P. Mattavelli, and P. Tomasin, “High-performance hysteresis modulation technique for active filters,” IEEE Trans. Power Electronics, vol. 12, no. 5, pp. 876-884, Sep. 1997.
[32] S. R. Bowes and S. Grewal, “Three-level hysteresis band modulation strategy for single-phase PWM inverters,” IEE Proc. Electic Power Applications, vol. 146, no. 6, pp. 695-706, Nov. 1999.
[33] A. V. Rajarathnam, K. M. Rahman, and M. Ehsani, “Improvement of hysteresis control in switched reluctance motor drives,” International Conf. Electrical Machines and Drives, pp. 537—539, 1999.
[34] L. M. Junior, “A decoupled, hysteresis based, voltage controller for a current source converter,” International Power Electronics Conf., Tokyo, Japan, pp. 2019-2024, 2000.
[35] A. D. Pizzo, M. Pasquariello, and A. Perfetto, “An optimized PWM control technique of three-level inverters for induction motor deives,” International Power Electronics Conf., Tokyo, Japan, pp. 124-129, 2000.
[36] C. T. Pan and T. Y. Chang, “An improved hysteresis current controller for reducing switching frequency,” IEEE Trans. Power Electronics, vol. 9, pp. 97-104, Jan. 1994.
[37] S. K. Thomas, “Evaluation of grid-connected inverter power systems: the utility interface,” IEEE Trans. Industry Applications, vol. 20, no. 4, pp. 735-741, July/Aug. 1984.
[38] J. D. V. Wyk, H. C. Skudelny, and A. M. Hellmann, “Power electronics, control of the electromechnical energy conversion process and some application,” Trans. Japan Institute of Electrical Engineering, vol. 133, pp. 369-399, Nov. 1986,
[39] J. J. Bzura, “The new England electric photovoltaic systems research and demonstration,” IEEE Trans. Energy Conversion, vol. 5, no. 2, pp. 284-289, Mar. 1990.
[40] I. Abouzahr, R. Ramakumar, “An approach to assess the performance of utility- interactive photovoltaic system,” IEEE Trans. Energy Conversion, vol. 8, no 2, pp. 144-149, Mar. 1993.
[41] S. J. Chiang, K. T, Chang, and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Trans. Industrial Electronics, vol. 45, no. 3, pp. 385-394, June 1998.
[42] C. T. Pan, J. J. Chen, C. P. Chu, and Y. S. Huang, “A fast maximum power point tracker for photovoltaic power systems,” IEEE Industrial Electronics Conf., pp. 390-393, 1999.
[43] G. A. Smith, P. A. Onions, and D. G. Infield, “Predicting islanding operation of grid connected PV inverters,” IEE Proc. Electric Power Applications, vol. 147, no. 1, pp. 1-6, Jan. 2000.
[44] H. Mohammed and C. O. Nwankpa, “Stochastic analysis and simulation of grid-connected wind energy conversion system,” IEEE Trans. Energy Conversion, vol. 15, no. 1, pp. 85-90, Mar. 2000.
[45] Z. Chen and E. Spooner, “Grid power quality with variable speed wind turbines,” IEEE Trans. Energy Conversion, vol. 16, no. 2, pp. 148-154, June 2001.
[46] F. Giraud and Z. M. Salameh, “Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage,” IEEE Trans. Energy Conversion, vol. 16, no. 1, pp. 1-7, Mar. 2001.
[47] P. D. Ziogas, E. P. Wiechmann, and V. R. Stefanovic, “A computer-aided analysis and design approach for static voltage source inverter,” IEEE Trans. Industrial Electronics, vol. IE-21, pp. 1234-1241, Sep./Oct. 1985.
[48] E. P. Wiechmann, P. D. Ziogas, and V. R. Stefanovic, “Generalized functional model for three phase PWM inverter/rectifier converters,” IEEE Industry Applications Conf., pp. 984-993, 1985.
[49] G. D. Marques, “Numerical simulation method for the slip power recovery system,” IEE Proc. Electric Power Applications, vol. 146, no. 1, pp. 17-24, Jan. 1999.
[50] B. K. Lee and M. Ehasni, “A simplified functional simulation model for three-phase voltage-source inverter using switching function concept,” IEEE Trans. Industrial Electronics, vol. 48, no. 2, Apr. 2001.
[51] M. Ohshima, “Current error tracking mode AC current waveform control method for single phase self commutated voltage source power converter,” Trans. Electrical Engeering, Japan, vol. 114-D, no. 3, pp. 289-298, Mar. 1994.
[52] M. Ohshima and E. Masada, “AC filter design procedure for error tracking mode single phase PCS''s,” International Power Electronics Conf., Yokohama, Japan, pp. 1464-1469, 1995.
[53] M. Ohshima, “Novel error tracking mode ac current waveform control method and it ac filter design procdure,” Europe Power Electronics Jounal, vol. 2, pp. 2472-2477, 1995.
[54] M. Ohshima and E. Masada, “A single-phase PCS with a novel constantly sampled current-regulated PWM scheme,” IEEE Trans. Power Electronics, vol. 14, no. 5, pp. 823-830, Sep. 1999.
[55] M. Ohshima and E. Masada, “The P-Q controllable domain of a single phase PWM converter to preserve sinusoidal AC current waveform,” IEEE Trans. Power Electronics, vol. 15, no. 3, pp. 485-494, May 2000.
[56] J. W. V. Daan, F. C. Lee; D. Boroyevich, “Power electronics technology: present trends and future developments,” Proc. IEEE, vol. 89, no. 6, pp. 799-802, Jun 2001.
[57] W. Mcmurray, “Modulation of the chopping frequency in DC choppers and PWM inverters having current-hysteresis controllers,” IEEE Trans. Industry Applications, vol. 20, no. 4, pp. 763-768, July/Aug. 1984.
[58] C. P. Henze and M. Mohan, “A digitally controlled AC to DC power conditioner that draws sinusoidal input current,” IEEE Power Electronics Specialists Conf., pp. 531-540, June 1986.
[59] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Industrial Electronics, vol. 37, no. 5, pp. 402-408, Oct. 1990.
[60] A. Nabae, S. Ogasawara, and H. Akagi, “A novel control scheme for curretnt-controlled PWM inverters,” IEEE Trans. Industrial Electronics, vol. 22, no. 4, pp. 697-701, July/Aug. 1986.
[61] L. Malesani and P. Tenti, “A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency,” IEEE Trans. Industry Applictions, vol. 26, no. 1, pp. 88-92, Jan./Feb. 1990.
[62] C. Chiarelli, L. Malesani, S. Pirondini, and P. Tomasin, “Single-Phase, Three-Level, Constant Frequency Current Hysteresis Control for UPS Application,” Europe Power Electronics Conf., pp. 180-185, 1993.
[63] C. Wong, N. Mohan, and J. He, “Adaptive phase control for three phase PWM AC-to DC converters with constant switching frequncy,” Power Conversion Conf., Yokohama, pp. 73-78, 1993.
[64] Qunying Yao and D.G. Holmes, “A simple, novel method for variable- hysteresis-band current control of a three phase inverter with constant switching frequency,” IEEE Industry Applications Conf., pp. 1122-1129, 1993.
[65] I. Nagy, “Novel adaptive tolerance band based PWM for field-oriented control of induction machines,” IEEE Trans. Industrial Electronics, vol. 41, no. 4, pp. 406-417, Aug. 1994.
[66] L. Sonaglioni, “preductive digital hysteresis current control,” IEEE Industry Applications Conf., vol. 3, pp. 1879-1886, 1995.
[67] L. Malesani, P. Mattavelli, and P. Tomasin, “Improved constant-frequency hysteresis current control of VSI inverters with simple feed-forward bandwidth prediction,” IEEE Industry Applications Conf., vol. 3, pp. 2633-2640, 1995.
[68] L. Malesani, P. Mattavelli, and P. Tomasin, “High-performance hysteresis modulation technique for active filters,” IEEE Applied Power Electronics Conf., vol. 2, pp. 939-946, 1996.
[69] L. Malesani, L. Rossetto, P. Tomasin, and A. Zuccato, “Digital adaptive hysteresis current control with clocked commutations and wide operating range,” IEEE Trans. Indutry Applicatons, vol. 32, no. 2, pp. 316-325, Mar./Apr. 1996.
[70] C. Gatlan and L. Gatlan, “AC to DC PWM voltage source converter under hysteresis current control,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 469-473, 1997.
[71] L. Malesani, P. Mattavelli, and P. Tomasin, “Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction,” IEEE Trans. Industry Applications, vol. 33, no. 5, pp. 1194-1202, Sep./Oct. 1997.
[72] K.M. Rahman, M.R. Khan, M.A. Choudhury, and M.A. Rahman, “Variable-band hysteresis current controllers for PWM voltage-source inverters,” IEEE Trans. Power Electronics, vol. 12, no. 6, pp. 964-970, Nov. 1997.
[73] S. Buso, S. Fasolo, L. Malesani, and P. Mattavelli, “A dead-beat adaptive hysteresis current control,” IEEE Industry Applications Conf., vol. 1, pp. 72-78, 1999.
[74] S. Buso, S. Fasolo, L. Malesani, and P. Mattavelli, “A dead-beat adaptive hysteresis current control,” IEEE Trans. Industry Applications, vol. 36, no. 4, pp. 1174-1180, July/Aug. 2000.
[75] S. R. Bowes, S. Grewal, and D. Holliday, “Novel adaptive hysteresis band modulation strategy for three-phase inverters,” IEE Proc. Electric Power Applications, vol. 148, no. 1, pp. 51-61, Jan. 2001.
[76] T. G. Haberler and D. M. Divan, “Performance characterization of a new discrete pulse modulated current regulator,” IEEE Industry Applications Conf., pp. 395-405, 1988.
[77] J. C. Salmon, “Circuit topologies for single-phase voltage-doubler boost rectifiers,” IEEE Trans. Power Electronics, vol. 8, no. 5, pp. 521-529, Oct. 1993.
[78] J. C. Salmon, “Techniques for minimizing the input current distortion of current-controlled single-phase boost rectifiers,” IEEE Trans. Power Electronics, vol. 8, no. 4, pp. 509-520, Oct. 1993.
[79] H. J. Chiu, “Power factor correction techniques based on the input current slope scheme,” Ph.D. Dissertation, National Taiwan University of Science and Technology, 2000.
[80] J. W. Dixon, A. B. Kulkarni, M. Nishimoto, and B. T. Ooi, “Characteristics of a controlled-current PWM rectifier-inverter link,” IEEE Trans. Industry Applications, vol. 23, no. 6, pp. 1022-1028, Nov./Dec. 1987.
[81] T. Kato and K. Miyao, “Modified hysteresis control with minor loops for single-phase full-bridge inverters,” IEEE Industry Applications Conf., vol. 1, pp. 689-693, 1988.
[82] Y. K. Lo, H. J. Chiu, and S. Y. Ou, “Dual hysteresis loops for a high performance four-switch boost rectifier,” IEEE Trans. Industrial Electronics, vol. 47, no. 5, pp. 1174-1176, Oct. 2000.
[83] G. H. Bode and D. G. Holmes, “Implementation of three level hysteresis current control for a single phsae voltage source inverter,” IEEE Power Electronics Specialists Conf., vol. 1, pp. 33-38, 2000.
[84] A. Tilli and A. Tonielli, “Sequential design of hysteresis current controller for three-phase inverter,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 771-781, Oct. 1998.
[85] K. Matsuse, K. Sugita, T. Kitahata, and L. Huang, “A control method of a three phase five-level PWM converter,” IEEE Industrial Electronics Conf., vol. 2, pp. 750-754, 1998.
[86] M. Lafa, I. J. Iglesias, C. Veganzpnes, and M. Visiers, “A novel double hysteresis-Band current control for a three-level voltage source inverter,” IEEE Power Electronics Specialists Conf., vol. 1, pp. 21-26, 2000.
[87] J. F. Chen, T. H. Ai, T. J. Liang, and S. P. Chi, “A thermal equalization method for HPWM full-bridge inverter,” R.O.C. 21th Symposium on Electrical Power Engineering, pp. 1083-1086, 2000.
[88] A. V. Anunciafa and M. M. Silva, “A new current mode control process and applications,” IEEE Power Electronics Specialists Conf., pp.683-694, 1989.
[89] J. W. Kolar, H. Ertl and F. C. Zach, “Influence of the modulation method on the conduction and switching losses of a PWM converter system,” IEEE Trans. Industry Applications, vol. 27, no. 6, pp. 1063-1075, Nov./Dec. 1991.
[90] M. Hengchun, D. Boroyevich, A. Ravindra and F. C. Lee, “Analysis and design of high frequency three-phase boost rectifiers” IEEE Applied Power Electronics Conf., vol. 2, pp. 538-544, 1996.
[91] C. T.Pan, J. Y. Chen and G. J. Hwang, “Output voltage bounds of a three-phase boost rectifier,” IEEE Trans. Aerospace and Electronic Systems, vol. 37, no. 2, pp. 671-678, Apr. 2001.
[92] J. Holtz and S. Stadtfeld, “A predictive controller for the stator current vector of AC machineds fed from a switched voltage source,” Power Electronic Conference, Japan, pp. 1665-1675, 1983.
[93] J. Holtz and S. Stadtfeld, “A PWM inverter drive system with on-line optimized pulse patterns,” Europe Power Electronics Journal, pp. 321-325, 1985.
[94] U. Boelkens, “Comparative study on trajectory-based pulsewidth modulation methods for three-phase converters feeding induction machines,” Ph.D. Dissertation, Wuppertal University, Germany, 1989.
[95] C. Rossi and A. Tonielli, “Robust current controller for three-phase inverter using finite-state automation,” IEEE Trans. Industrial Electronics, vol. 42, pp. 169-178, Apr. 1995.
[96] M. P. Kazmierkowski and W. Sulkowski, “A novel vector control scheme for transistor PWM inverter-fed induction motor drive,” IEEE Trans. Industrial Electronics, vol. 38, pp. 41-47, Feb. 1991.
[97] J. F. Martins, J. F. Silbva, and A. J. Pores, “A novel and simple current controller for three-phase IGBT PWM power inverters - a comparative study,” IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, pp. 241-246, 1997.
[98] M. L. Mazenc, C. Villanueva, and J. Hector, “Study and implementation of hysteresis controlled inverter on a permanent magnet synchronous machine,” IEEE Trans. Industry Applications, vol. 21, no. 2, pp. 408-413, Mar./Apr. 1985.
[99] B. H. Kwon, T. W. Kim, and J. H. Youm, “A novel SVM-based hysteresis current controller,” IEEE Trans. Power Electronics, vol. 13, no 2, pp. 297-307, Mar. 1998.
[100] B. H. Kwon, B. D. Min, and J. H. Youm, “An improved space-vector-based hysteresis current controller,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 752-760, Oct. 1998.
[101] B. D. Min, J. H. Youm, and B. H. Kwon, “SVM-based hysteresis current controller for three-phase PWM rectifier,” IEE Proc. Electric Power Applications, vol. 146, no. 2, pp. 225-230, Mar. 1999.
[102] I. M. H. Babaa, T. G. Wilson, and Y. Yu, “Analysis solutions of limit cycles in a feedback-regulated converter system with hysteresis,” IEEE Trans. Automatic Control, vol. 13, no. 5, pp. 524-531, Oct. 1896.
[103] B. P. Schweitzer and A. B. Rosenstein, “Free running-switching mode power regulator analysis and design,” IEEE Trans. Aerospace, vol. 2, pp. 1171-1180, Oct. 1964.
[104] F. F. Judd and C. T. Chen, “Analysis and optimal design of self-oscillating DC-to-DC converters,” IEEE Trans. Circuit Theory, vol. 18, no. 6, pp. 651-658, Nov. 1971.
[105] M. Nishimoto, J. W. Dixon, A. B. Kulkarni, and B. T. Ooi, “An integrated controlled-current PWM rectifier chopper link for sliding mode position control,” IEEE Trans. Industry Applications, vol. 23, no. 5, pp. 894-900, Sep./Oct. 1987.
[106] B. T. Ooi, J. S. Salmon, J. W. Dixon, and A. B. Kulkarni, “A three-phase controlled-current PWM converter with leading power factor,” IEEE Trans. Industry Applications, vol. 23, no. 1, pp. 78-84, Jan./Feb. 1987.
[107] J. T. Boys and A. W. Green, “Current-forced single-phase reversible rectifier,” IEE Proc. Electric Power Applicatons, vol. 136, no.5, pp. 205-211, Sep. 1989.
[108] B. T. Ooi, B. M. M. Mwinyiwiwa, X. Wang, and G. Joos, “Operating limits of the current-regulated delta-modulated current-source PWM rectifier,” IEEE Trans. Industrial Electronics, vol. 38, no. 4, pp. 268-274, Aug. 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top