跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宗義
研究生(外文):Tsung-Yi Huang
論文名稱:絕緣閘雙極性電晶體模型的建立
論文名稱(外文):The Modeling of Insulated-Gate Bipolar Transistor
指導教授:龔 正
指導教授(外文):Jeng Gong
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:187
中文關鍵詞:高功率絕緣閘雙極性電晶體電流增益栓鎖效應關閉電流關閉時間高載子注入崩潰電壓
外文關鍵詞:high powerIGBTcurrent gainlatch-upturn-off currentturn-off timehigh-level injectionbreakdown voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
絕緣閘雙極性電晶體 (Insulated-Gate Bipolar Transistor)是在1982年所發展出來的三端功率半導體元件。此元件的輸入端是電壓控制的金氧半電晶體,輸出端是提供大電流的雙極性電晶體,它成功的結合了金氧半電晶體和雙極性電晶體的優點,具備低導通電阻,可承受高電壓及相當快的切換速度,缺點是有寄生的PNPN結構,在很高電流操作時會產生栓鎖效應。
N型通導的IGBT元件,根據其結構可視為MOSFET串接基極寬度很長的pnp-BJT,寄生的npn-BJT和P-Well的基極電阻所組成的等效電路。本論文即由此等效電路再考慮雙極性傳輸方程式、電荷控制方程式、高載子注入效應,建立一個IGBT可解析元件模型。由於元件參數在計算時有互相耦合的關係,需要引進疊代法來計算出參數的收斂值,最後萃取所有等效電路的參數數值,帶入電壓-電流公式,計算出電壓-電流的值,並代入栓鎖效應的模型,判斷栓鎖效應是否發生。
在元件關閉時的電流-時間模型分析這一方面,本論文考慮元件關閉時,MOSFET和BJT的耦合效應下,漂移電洞電流伴隨MOSFET的電子電流移走而消失,以及部分電子電流注入pnp-BJT射極的效應。這兩種效應加速閘極關閉時,電流隨時間的衰減,改善元件關閉時傳統的電流-時間模型中,電流被高估的情形。同時,我們推導出一個高載子注入效應下,少數載子等效生存時間的模型,少數載子的生存時間不像傳統的模型,是一個定值,而和操作的電流值有關,電流越大,等效的少數載子生存時間越短。
論文中,使用商業軟體中的二維製程模擬軟體TSUPREM-4做精確的製程模擬,得到元件的結構形狀,氧化層厚度及矽晶圓內的雜質濃度分布;接著用二維電性模擬軟體MEDICI,建立元件的電性模型,模擬元件的I-V特性使用電性模擬軟體 MEDICI,分析內圈IGBT單元導通電流和崩潰電壓,內圈的IGBT單元其空乏區彼此相連最接近平面形狀的空乏區,因此耐壓能力大於外圈的IGBT單元。外圈的IGBT單元,其耐壓能力受到空乏區彎曲率的影響,電場強度增加,因此崩潰電壓較低。在外圈的IGBT單元之外圍加上一圈保護環,將空乏區的曲率半徑延展使其增大,以提高耐壓能力。從模擬的結果發現,保護環與外圈IGBT單元有一最適當的距離,才能提昇崩潰電壓。另外場板的使用也可以增加外圈IGBT的耐壓,搭配保護環使用時,保護環的最佳化距離會隨場板長度增加而增加。
The Insulated-Gate Bipolar Transistor (IGBT) is a switching power device designed to overcome the large turn-off time of power bipolar transistor and the high on-state power loss of power MOSFET. The IGBT behaves as a bipolar transistor whose base current is supplied by a MOSFET. The disadvantages of the IGBT are the large turn-off time compared with the power MOSFEET and latch-up due to the inherent p/n/p/n structure. The IGBT has a wide-base region with the contact of the drain region of MOSFET and is operated under high -level injection. Because of this, the conventional BJT and MOSFET model are not adequate for the IGBT to predict the on-state and turn-off electrical characteristics accurately. Hence, a new model developed in this dissertation is proposed.
This new IGBT model is developed using the ambipolar transport in wide-base BJT and MOSFET model. In addition, the iteration method is applied to the physically-based analytical equations because the device parameters affect each other mutually until the equilibrium is attained. Hence, an analytical method of analyzing IGBT current-voltage characteristics in terms of applied terminal voltage is established. This new analytical IGBT model is used to describe the on-state I-V characteristics, turn-off current and temperature effect on both latch-up criteria. Besides, this method is also used to extract the essential physical devices parameters of the model, such as the injected carrier concentrations, electron and hole current densities and current gains of BJT and they are also expressed as functions of applied voltages.
The commercial process and device simulator are used to simulate the electrical characteristics in order to verify the accuracy of this analytical model. Moreover, The device edge effect and the spacing between cells are taken into consideration because these effects are important in the device fabrication. The guard-ring effect on I-V properties and breakdown, the parasitic JFET effect on I-V properties are inspected and analyzed using these tools.
In summary, a new analytical model is developed for IGBT. It is shown that the new model gives accurately steady-state I-V properties, turn-off current and the temperature effect. Besides, the device''s parameters can be extracted using this method to predict the occurring of latch-up. The accuracy of his model is validated by comparison with the measured data in this dissertation.
Chapter 1. Introduction 1
Chapter 2. IGBT Theory Review 4
2-1. P-i-N rectifier/MOSFET model 6
2-2. Bipolar transistor/MOSFET model 8
2-3. Bipolar transistor/MOSFET with carriers modulation model 10
2-4. Latch-up model 13
2-5. The breakdown model with guard-ring effect 14
Chapter 3. I-V Characteristics in Terms of Terminal Voltages 18
3-1. Physically based analytical I-V model 20
3-2. The parasitic JFET effect on the conduction properties 26
3-3. The novel latch-up model 27
3-4. The I-V simulation results with physical analytical model 31
3-5. The latch-up simulation results with physical analytical model 34
3-6. The extracted equivalent circuit parameters with physical analytical model 35
3-7. The temperature effect of I-V characteristics and latch-up 37
3-8. Discussion 38
Chapter 4. The Turn-off Model 41
4-1. The turn-off current model 42
4-2. The simulation results of turn-off current model 47
4-3. Discussion 50
Chapter 5. The I-V Simulation Results using Commercial Software 53
5-1. The structure simulation with TSUPREM-4 54
5-2. The static electrical and latch-up simulation with MEDICI 55
5-3. The temperature effect of I-V characteristics and latch-up 57
5-4. Discussion 58
Chapter 6. Guard-Ring Effect on Conduction Properties and Breakdown Voltage 59
6-1. The guard-ring effect on breakdown voltage 60
6-2. The guard-ring effect on I-V characteristics 62
6-3. The parasitic JFET effect on I-V characteristics 63
6-4. Discussion 65
Chapter 7. Conclusions 67
References:
[1] B. J. Baliga, "Power Semiconductor Devices" (PWS Publishing company, 2nd ed 1996).
[2] L. A. Goodman, "Recent Advances in Discrete Power Transistors", IEDM Technical Digest, pp.270-273, Dec.1984.
[3] S. K. Ghandhi, "Semiconductor Power Device" (John Wiley & Sons, New York, 1977).
[4] R. Jayarama, V. Rumennik, B. Singer, and E. H. Stupp, "Comparison of high voltage devices for power integrated circuits, " in IEDM Tech. Dig., pp.258-261, 1984.
[5] B. J. Baliga, M. S. Adler, P. V. Gray and R. P. Love, "The Insulated Gate Rectifier(IGR), "A New Power Switching Device", IEDM Technical Digest, pp.264-265, Dec.1982.
[6] J. P. Russell, A. M. Goodman, L.A. Goodman and J. M. Neilson, "The COMFET-A New High Conductance MOS-Gated Device" IEEE Electron Dev. Lett., Vol. EDL-4, 63, 1983.
[7] B. J. Baliga, M. S. Alder, R. P. Love, P. V. Gray and N. D. Zomer, "The Insulated Gate Transistor: A New Three-Terminal MOS-Controlled Bipolar Power Device", IEEE Transaction on Electron Devices, Vol.ED-31, no.6, pp.821-828, June 1984.
[8] A .R. Hefner: PhD. Thesis, "Characterization and Modeling of the power Insulated Gate Bipolar Transistor", Maryland College Park University, Maryland, 1987.
[9] N. Zommer, "The monolithic HV BIPMOS" IEEE International Electron Devices Meeting Digest, Abstract 11.5, pp. 263-266, 1981.
[10] D. Y. Chen and S. Chin, "Design consideration for FET-gated power transistor, " IEEE Trans. Electron Devices, Vol. ED-31, pp. 1834-1837, 1984.
[11] Mitsuhiko Kitagawa, Shigeru Hasegawa, Tomoki Inoue, Akihiro Yahata and Hiromichi Ohashi, "Latch-up Suppressed Insulated Gate Bipolar Transistor by the Deep P+ Ion Implantation under n+ Source," Jpn. J. Appl. Phys. 33, pp.563, 1994.
[12] B. J. Baliga, M. S. Adler, P. V. Gray R. P. Love, "Suppressing Latch up in Insulated Gate Transistors", IEEE Electron Device Letters, Vol.EDL-5, No.8, pp. 323-325, August 1984.
[13] A. R. Hefner, "An improved understanding for the transient operation of the power insulated gate bipolar transistor (IGBT), " IEEE Trans. Power Electron., Vol. 5, p. 459, 1990.
[14] B. J. Baliga, "Analysis of the output conductance of insulated gate transistors, " IEEE Electron Device Letters, Vol.EDL-7, pp. 686-688, 1986.
[15] Ranbir Singh and B.J. Baliga, "Cryogenic Operation of Asymmetric n-channel IGBTs, " Proceedings of 1992 International Symposium on Power Semiconductor Devices & Ics, Tokyo, pp.188-193.
[16] A. Nakagawa, H. Ohashi, M. Kurata, H. Yamaguchi, and K. Watanabe, "Non-latch-up, 1200 volt bipolar mode MOSFET with larger SOA," IEEE Int. Electron Devices Meeting Digest, Abs. 16.8, pp. 860-861, 1984.
[17] R. S. Muller and T. I. Kamins, "Device Electronics for Integrated Circuits, " (Wiley, New York, 2nd ed, 1986).
[18] Jerry G.Fossum, Yeong-Seuk Kim, "Static and Dynamic Latchup in the LIGBT", IEEE Transaction on Electron Devices, Vol.ED-35, No.11, pp.1977-1985, Nov. 1988.
[19] Di-Son Kuo, Chenming Hu and Steven P. Sapp, "An Analytic Model for The Power Bipolar-Mos Transistor," Solid State Electronics, Vol. 29, pp. 1229-1237 1986.
[20] A. R. Hefner and D. L. Blackburn, "An analytical model for the steady-state and transient characteristics of the power insulated gate bipolar transistor, " Solid State Electronics, Vol. 31, pp. 1513-1532, 1988.
[21] W. van Roosbroeck, "The Transport of Added Current Carriers in a Homogeneous Semiconductor, " Physical Review, Vol. 91, 282, 1953.
[22] A. S. Grove, "Physics and Technology of Semiconductor Devices, " (Wiley, New York, 1967), pp.184-185.
[23] J.Zeng, P.A.Mawby, M.S.Towers, K.Board, Z.R.Hu, "Design of IGBTs for Latch-Up Free Operation", Solid-State Electronics vol.37, no.8, pp.1471-1475, 1994.
[24] N.R. Howard, "Avalanche multiplication in silicon junctions, " J. Electron. Control., Vol. 13, pp. 537-544, 1962.
[25] W. Fulop, "Calculation of avanche breakdown of silicon P-N juctions, " Solid State Electronics, Vol. 10, pp. 39-43, 1967.
[26] B. J. Baliga and S.K. Ghandi, "Analytical solutions for the breakdown voltage abrupt cylindrical and spherical junctions, " Solid State Electron., 19, 739-744, 1976.
[27] M. S. Adler, V.A. K. Temple, A. P. Ferro and R. C. Rustay, "Theory and breakdown voltage for planar devices with a single field limiting ring, " IEEE Trans., Electron Devices, ED-24, 107-113, 1977.
[28] A. S. Grove, O. Leistiko and W. W. Hooger, "Effect of surface fields on the breakdown voltage of planar silicon p-njunctions, " IEEE Trans. Electron Devices, ED-14, 157-162, 1967.
[29] Takeaki Okabe, Isao Yoshida, Shikayuki Ochi, Sumio Nishida and Minoru Nagata, "A complementary pair of Planar-Power MOSFETs, " IEEE Trans. Electron Device, Vol. ED-27, No. 2, pp. 334-339, Feb. 1980.
[30] G. Charitat, "A. Nezar and P. Rossel, High Voltage RESURF LDMOS for Smart Power Integrated Circuits, " Revue De Physique Applique, pp. 993-1000, 1989.
[31] Z. Parpia, C. Andre and T. Salama, "Optimization of RESURF LDMOS for Smart Power Integrated Circuit, " IEEE Trans. Electron Devices Vol. ED-37 No. 3 pp 789-795, 1990.
[32] C. Frank Wheatley, Jr., Gray M. Dolny, "COMFET-The Ultimate Power Device, A General Study of Power Devices", Solid State Technology, pp.121-128, Nov.1985.
[33] W. van Roosbroeck, "The Transport of Added Current Carriers in a Homogeneous Semiconductor, " Physical Review, vol. 91, 282, 1953.
[34] Kuang Sheng, Stephen J. Finney, and Barry W. Williams, "A New Analytical IGBT Model with Improved Electrical Characteristics, " IEEE Trans. Power Electronics, Vol. 14, No. 1, pp. 98-107, Jan. 1999.
[35] B. J. Baliga, "Temperature behavior of insulated gate transistor characteristics, " Soled State Electronics, Vol. 28, pp. 289-197, 1985.
[36] R. Sunkavalli, B. J. Baliga, and Y. S. Huang, High temperature performance of dielectrically isolated LDMOSFET, LIGBT, and LEST, in IEDM Tech. Dig., pp. 683-686, 1993.
[37] S. Hachad, C. Cros, D. Darees, J. M. Dorkel, and P. Leturcq, "Latch-up Criteria in Insulated Gate p-n-p-n Structure," IEEE Transactions on Electron Devices, VOL. ED-32, NO.3, 1985.
[38] Y. Yue, J. J. Liou, and Batarseh, "A Steady-State and Transient IGBT Model Valid for All Free-Carrier Injection Conditions, " APEC ''97 Conference. Vol. 1 pp. 168-172, 1997.
[39] A. R. Hefner, A dynamical electro-thermal model for the IGBT IEEE Trans. On Industry Applications, Vol. 30, No.2, pp. 394-405, 1994.
[40] J. D. Plummer and B. W. Scharf, "Insulated gate planar thyristor, " IEEE Trans. Electron Devices, Vol. ED-27, pp. 380-394, 1980.
[41] Hamza Yilmaz, W.Ron Van Dell, King Owyang, M.F.Chang, "Insulated Gate Transistor Physics: Modeling and Optimization of the On-State Characteristics", IEEE Transaction on Electron Devices, vol.ED-32, no.12, pp.2812-2818, Dec.1985.
[42] Tsung-Yi Huang, Jeng Gong and Jinn-Horng Lai, "An Analytical Method of Analyzing Insulated-Gate Bipolar Transistor Characteristics in Terms of Applied Terminal Voltages," Jpn. J. Appl. Phys. Vol. 40, pp. 4811-4818, 2001.
[43] H. -R. Chang, and B. J. Baliga, 500V n-Channel Insulated-Gate Bipolar Transistor with a Trench Gate Structure, IEEE Transactions on Electron Devices, VOL. ED-36, NO.9, 1989.
[44] Tsung-Yi Huang and Jeng Gong, "A Simple Method to Analyze the Electrical Properties of High Power Lateral Double-Diffused Metal-Oxide-Semiconductor, " Jpn. J. Appl. Phys. Vol. 38, pp. L170-173, 1999.
[45] B. J. Baliga, "Analysis of Insulated Gate Transistor Turn-Off Characteristics", IEEE Electron Device Letters, vol.EDL-6, no.2, pp.74-77, Fab.1985.
[46] D.S. Kuo, J.Y. Choi, D.Giandomenica, C. Hu, S.P. Sapp, K.A. Sassaman, and R.Bregar, "Modeling the turn-off characteristics of the bipolar-MOS transistor, " IEEE Electron Device Letters, Vol.EDL-6, pp. 211-214, 1985.
[47] S. M. Sze "Semiconductor Devices Physics and Technology" (Wiley, New York, 2nd ed., 1985).
[48] T. P. Chow, B.J.Baliga, Deva N.Pattanayak, "Counterdoping of MOS Channel(CDC)-A New Technique of Improving Suppression of Latching in Insulated Gate Bipolar Transistors", IEEE Electron Device Letters, vol.EDL-9, no.1, pp.29-31, January 1988.
[49] A. Nakagwa and H. Ohashi, 蜨V and 1200V bipolar mode MOSFETs with high current capability, " IEEE Electron Device Letters, Vol.EDL-6, pp. 378-380 , 1985.
[50] Hamza Yilmaz, King Owyang, Mike F. Chang, John L. Benjamin, and W. Ron Van Dell, Rescent Advances in Insulated Gate Bipolar Transistor Technology, IEEE Trans. On Industry Application. Vol. 26. No.5, 1990, pp. 831-834.
[51] G. W. Neudeck: "The Bipolar Junction Transistor, " (Addison-Wesley, 2nd.,1989) Chap. 5, p.85.
[52] R. Beaufoy, and J. J. Sparkes, Automat. Teleph. Elect. J., 13 Reprint 112, 1957.
[53] Tsung-Yi Huang, Jeng Gong and Shih-Hui Chen, "Modeling The Turn-off Characteristics of Insulated-Gate Bipolar Transistor, " Jpn. J. Appl. Phys.
[54] A. R. Hefner, and D. L. Blackburn, A performance trade-off for the insulated gate bipolar transistor: buffer layer versus base lifetime reduction, IEEE Trans. Power Electronics, Vol. PE-2, pp. 194-207, 1987.
[55] AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program, Version 2000.4.0.
[56] AVANT! MEDICI, Two-Dimensional Device Simulation Program, Version 2000.4.0.
[57] David Michacl Boisvert, "Physics and Technology of High Speed, Low Loss On-Resistance Power Devices", Technical Report, No.G700-3, Prepared under Motors Corporation Contract No.43-8, April 1990.
[58] C. J. Chang, "The Study of IGBT Latch-up Characteristics", Thesis of NTHU EE Master, 1995.
[59] V. Parthasarathy, K. C. So, Z. Shen, and T. P. Chow, Cell optimization for 500 V n-channel IGBTs Proc. Of Int. Power Semiconductor Device and ICs, pp. 69-74, 1994.
[60] H. Yilmaz, "Cell Geometry Effect on IGT Latch-up," IEEE Electron Device Letters. Vol. EDL-6, No. 8. August 1985, pp. 419-421.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊