|
Box, G. E. P. and Jenkins, G. M. 1970, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1970. Chang, Y. C., and Chang, S. “A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion,” IEEE Trans. Signal Processing, (accepted, 2001) Chang, Y. C., and Chang, S. “The entropy of discrete-time fractional Gaussian noise and its application to the electromyogram of external urethral sphincter signals,” Journal of Biomedical Engineering- Appl., Basis, and Comm. (accepted, 2001) Chang, S., Mao, S. T., Kuo, T. P., Hu, S. J., and Cheng, C. L. 2000, “Studies of detrusor-sphincter synergia and dyssynergia during micturition in rats via fractional Brownian motion,” IEEE Trans. Biomed. Eng. vol. 47, no. 8, pp. 1066-1073, 2000. Chen, C. C., Daponte, J. S. and Fox, M. D. 1989, “Fractal feature analysis and classification in medical imaging,” IEEE Trans. Med. Imaging, vol. 8, no. 2, pp. 133-142, June 1989. Chen, S. S., Keller, J. M., and Crownover, R. M. 1993, “On the calculation of fractal features from images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 10, pp. 1087-1090, Oct. 1993. Cherbit, G., Kahane, J. -P., and Jellett, F. 1991, Fractals: Non-integral dimensions and applications. New York: John Wiley & Sons, 1991. Cover, T. M. and Thomas, J. A. 1991, Elements of Information Theory. New York: John Wiley & Sons, 1991. Crilly, A. J., Earnshaw, R. A., and Jones, H. 1991, Fractals and Chaos. New York: Springer-Verlag, 1991. Deriche, M. and Tewfik, A. H. 1993, “Signal modeling with filtered discrete fractional noise processes,” IEEE Trans. Signal Processing, vol. 41, no. 9, pp.2839-2849, Sep. 1993. Dijkerman, R. W. and Mazumdar, R. R. 1994, “On the correlation structure of the wavelet coefficients of fractional Brownian motion,” IEEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1609-1612, Sep. 1994. Doob, J. L. 1953, Stochastic Processes. New York: John Wiley & Sons, 1953. Falconer, K. 1990, Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, 1990. Flandrin, P. 1989, “On the spectrum of fractional Brownian motions,” IEEE Trans. Inform. Theory, vol. 35, no. 1, pp. 197-199, Jan. 1989. Flandrin, P. 1992, “Wavelet analysis and synthesis of fractional Brownian motion,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 910-917, Mar. 1992. Fournier, A., Fussell, D., and Carpenter, L. 1982, “Computer rendering of stochastic models,” Graphics and Image Processing, vol. 25, n0. 6, pp. 371-384, June1982. Gardner, W. A. 1990, Introduction to Random Processes: With Application to Signals & Systems, 2nd ed. New York: McGraw-Hill, 1990. Gradshteyn, I. S., Ryzhik, I. M., and Jeffrey, 1994, A. Table of Integrals, Series, and Products, 5th ed. New York: Academic Press, 1994. Granger, C. W. J. and Joyeux, R. 1980, “An introduction to long-memory time series models and fractional differencing,” J. Time Series Anal., vol. 1, no. 1, pp. 15-29, 1980. Hosking, J. R. M. 1981, “Fractional differencing,” Biometrika, vol. 68, no. 1, pp. 165-176, 1981. Jin, X. C., Ong, S. H., and Jayasooriah, 1995, “A practical method for estimating fractal dimension,” Patter Recognition Letters, vol. 16, pp. 457-464, 1995. Kaplan, L. M. and Kuo, C. -C. J. 1993, “Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Harr basis,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3554-3562, Dec. 1993. Kashyap, R. L. and Eom, K. B. 1989, “Texture boundary detection based on the long correlation model,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 1, pp. 58-67, Jan. 1989. Kay, S. M. 1988, Modern Spectral Estimation: Theory & Application. Englewood Cliffs, New Jersey: Prentice-Hall, 1988. Keller, J. M., Chen, S., and Crownover, R. M. 1989, “Texture description and segmentation through fractal geometry,” Comput. Graphics Image Processing, vol. 45, pp. 150-166, 1989. Keller, J. M., Crownover, R. M., and Chen, R. Y. 1987, “Characteristics of natural scenes related to the fractal dimension,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, no. 5, pp. 621-627, Sep. 1987. Leu, J. S. and Papamarcou, A. 1995, “On estimating the spectral exponent of fractional Brownian motion,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 233-244, Jan. 1995. Liu, S. C. and Chang, S. 1997, “Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification,” IEEE Trans. Image Processing, vol. 6, no. 8, pp. 1176-1184, Aug. 1997. Lundahl, T., Ohley, W. J., Kay, S. M., and Siffert, R. “Fractional Brownian motion: A maximum likelihood estimator and its application to image texture,” IEEE Trans. Med. Imag.,, vol. MI-5, no. 3, pp. 152-161, Sep. 1986. Mandelbrot, B. B. and Van Ness, J. W. 1968, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev., vol. 10, pp. 422-437, Oct. 1968. Martin, W. and Flandrin, P. 1985, “Wigner-Ville spectral analysis of nonstationary processes,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-33, no. 6, pp. 1461-1470, Dec. 1985. Masry, E. 1993, “The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion,” IEEE Trans. Inform. Theory, vol. 39, no. 1, pp.260-264, Jan. 1993. Mathai, A. M. 1993, A Handbook of Generalized Special Functions for Statistical and Physical Sciences. New York: Oxford University Press, 1993. Miller, K. S. and Ross, B. 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley & Sons, 1993. Ohanian, P. P. and Dubes, R. C. 1992, “Performance evaluation for four classes of textural features,” Pattern Recognition Society, vol. 25, no. 8, pp. 819-833, 1992. Pentland, A. P. 1984, “Fractal-based description of natural scenes,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no. 6, pp. 661-674, Nov. 1984. Priestley, M. B. 1981, Spectral Analysis and Time Series, Volume 1: Univariate Series. New York: Academic Press, 1981. Priestley, M. B. 1981, Spectral Analysis and Time Series, Volume 2: Multivariate Series, Prediction and Control. New York: Academic Press, 1981. Rényi, A. 1970, Probability Theory. London: North-Holland, 1970. Samorodnitsky, G., and Taqqu, M. S. 1994, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. New York: Chapman & Hall, 1994. Sarkar, N. and Chaudhuri, B. B. 1992, “An efficient approach to estimation fractal dimension of textural images,” Pattern Recognition Society, vol. 25, no. 9, pp. 1035-1041, 1992. Sarkar, N. and Chaudhuri, B. B. 1994, “ An efficient differential box-counting approach to compute fractal dimension of image,” IEEE Trans. System, Man, and Cybernetics, vol. 24, no. 1, pp. 115-120, Jan. 1994. Shiryaev, A. N. 1996, Probability, 2nd ed., translated by R. P. Boas. New York: Springer-Verlag, 1996. Tewfik, A. H. and Kim, M. 1992, “Correlation structure of the discrete wavelet coefficients of fractional Brownian motion,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 904-909, Mar. 1992. Therrien, C. W. 1992, Discrete Random Signals and Statistical Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, 1992. Wornell, G. W. and Oppenheim, A. V. 1992, “Estimation of fractal signals from noisy measurements using wavelets,” IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 611-623, Mar. 1992.
|