跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 11:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇持恆
研究生(外文):Chih-Heng Su
論文名稱:切換式磁阻馬達驅動系統之性能改善研究
論文名稱(外文):PERFORMANCE IMPROVEMENT STUDY FOR A SWITCHED RELUCTANCE MOTOR DRIVE
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Chang-Ming Liaw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:110
中文關鍵詞:切換式磁阻馬達
外文關鍵詞:SWITCHED RELUCTANCE MOTOR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:681
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:1
切換式磁阻馬達(Switched reluctance motor, SRM)具有許多結構上及所用轉換器的優點,然而由於其因雙凸結構所產生之非線性電感及高轉矩紋波等特性,使得需有巧妙之切換及控制技巧以來提高其運轉效能。本論文之主要目地在於建立一以數位訊號處理器(Digital signal processor, DSP)為主之SRM驅動系統,並從事其性能改善研究。首先,探究SRM之結構特徵及其轉換器電路,並進行所建構馬達驅動系統動態模式之推導及估測。而為了進行性能測試並實現所設計之控制架構,建立了一以數位訊號處理器為主的SRM驅動器,並利用此驅動器進行一些馬達之基本特性量測以確認其操作性能。由於磁阻馬達的非線性電感特性及非線性的線圈電流波形,使得轉換器換相時刻的調整會大幅影響其轉矩產生特性,在這個課題上,首先觀察在速度開迴路及閉迴路下,改變換相時刻對馬達轉矩產生特性所造成的影響,再依據所得到的結果進行一智慧型換向調控技術來達到所要的響應特性。
本篇論文的另一個研究課題是進行磁阻馬達驅動器上的量化及強健速度控制。首先,在所選定的工作點之下,設計了一個由一前向控制器及一迴授控制器所組成的雙自由度速度控制器,以達到所規範的速度追蹤及調節特性。在所設計的雙自由度控制器中,其前向控制器基本上由馬達在所定工作點下的反模式所組成,所以當工作點或參數發生變化的時候,將無法維持原先所設計的追蹤軌跡,為了改善這個問題,針對前向控制器加上一模糊調控機制,在文章中將詳細解說此模糊調控機構的建立方式。
最後,為提升馬達在高速下的運轉特性,本論文規劃一置於電池與SRM驅動電路間的一前端轉換器。所提之轉換器能將電池的電壓提升至更高的值,並且透過適當的連接可以將此轉換器當作具有良好電力品質的切換式整流器來對電池充電。

Switched reluctance motor (SRM) possesses many structural and converter advantages, but due to the inherent features of double saliency and the nonlinear winding inductance, its torque generating is quite nonlinear and has high torque ripple. Therefore, sophisticated switching and control technologies are needed to improve its driving performance. The purpose of this thesis is to establish a DSP-based SRM drive and perform its driving performance improvement. First, the structural features of a SRM and its converter circuits are surveyed. Then the dynamic model derivation and estimation of a SRM drive are made. For making the performance test and evaluation of the developed control techniques, a DSP-based SRM drive is established. And some experimental results are provided to show its operating characteristics. Owing to the nonlinear winding inductance and non-ideal winding current waveform, the torque generating characteristic is significantly affected by the commutation timing. In performing the research about this issue, the effects of commutation instant variation on the motor torque generating characteristics under speed open and closed loops are first observed. Then accordingly, the intuitive tuning approach is developed to achieve the desired motor driving performance.
Another purpose of this thesis is to perform the quantitative and robust speed control of the SRM drive. First, a two-degrees-of-freedom (2DOF) controller, which consists of a feedback controller and a command feedforward controller, is designed at nominal case to meet the given tracking and regulation control specifications. In the 2DOFC, the feedforward controller is basically an inverse drive dynamic model at nominal case. As the variations of parameters and operating condition occur, the desired tracking response trajectory can not be further obtained. To solve this problem, a fuzzy tuning inverse model is employed as the command feedforward controller. The development of fuzzy control scheme is described in detail.
Finally, to further improve the operating characteristic under high speed, a front-end converter placed between the battery and the SRM converter is presented. The proposed converter can boost the battery voltage to a higher value. In addition, through proper connection, the converter can be operated as a switching-mode rectifier to charge the battery with good line drawn current power quality.

Acknowledgements………………………………………………… i
Abstract…………………………………………………………… ii
List of Contents………………………………………………… iv
List of Tables…………………………………………………… vii
List of Figures……………………………………………………viii
Chapter I. Introduction……………………………………… 1
Chapter II. Configuration and Modeling of the SRM Drive…5
2.1 Introduction………………………………………………… 5
2.2 Structure and Driving Control of SRM………………… 5
2.3 Some Typical Converter Circuits……………………… 6
2.4 Physical Dynamic Modeling of SRM…………………… 14
2.5 Parameter Estimation of the Dynamic Model……… 19
Chapter III. DSP-based SRM Drive………………………… 30
3.1 Introduction……………………………………………… 30
3.2 Some Practical Issues of Digital Control………… 30
3.2.1 Analysis and Design…………………………………… 30
3.3 The Established DSP-Based SRM Drive………………… 32
3.3.1 Power Circuit………………………………………… 32
3.3.2 DSP-based Digital Control Environment…………… 34
3.3.3 Operating Characteristics of the Established SRM Drive………………………………………………… 36
Chapter IV. Intelligent Commutation Tuning……… 41
4.1 Introduction…………………………………………… 41
4.2 The Effect of Commutation Instant Variation on the Driving Performance of SRM………………………………………… 41
4.3 Commutation Tuning Characteristic of SRM Drive under Speed Open-Loop…………………………………………… 42
4.3.1 The Proposed Commutation Tuning Method………… 42
4.3.2 Experimental Observation…………………………… 48
4.4 Commutation Tuning Characteristic of SRM Drive under Speed Closed-Loop…………………………………………… 57
4.4.1 The Proposed Commutation Tuning Method………… 57
4.4.2 Experimental Observation…………………………… 57
4.5 Commutation Tuning Control…………………………… 62
4.5.1 Programming Control for Speed Open-Loop Operation62
4.5.2 Intelligent Tuning for Speed Closed-Loop Operation62
4.5.3 Implementation of the Designed Tuning Mechanism 64
4.5.4 Measured Results……………………………………… 66
Chapter V. Speed Control of the SRM Drive……………… 71
5.1 Introduction……………………………………………… 71
5.2 2DOF Speed Controller…………………………………… 71
5.2.1 Controller Configuration and Design Methodology 71
5.2.2 Simulation and Measured Results…………………… 75
5.3 Feedforward Control using Fuzzy Adapted Inverse Model78
5.3.1 Fuzzification…………………………………………… 80
5.3.2 Linguistic Control Rules Establishment……………80
5.3.3 Defuzzification………………………………………… 84
5.3.4 Design and Simulation Results……………………… 87
5.3.5 Experimental Results………………………………… 87
Chapter VI. Front-End Converter and Its Operation Control………… 96
6.1 Introduction……………………………………………… 96
6.2 Circuit Configuration and Operation Modes of the Proposed Front-End Converter………………………………………… 97
6.2.1 Voltage Boosting and Cascade Buck-Boost Switch-Mode Rectification…………………………………… 97
6.2.2 Voltage Boosting and Buck Switch-Mode Rectification99
6.3 The Control for Four-Quadrant Front-End Converter…101
6.3.1 DC-to-DC Voltage Boosting………………………… 101
6.3.2 AC-to-DC Switch-Mode Rectification……………… 101
Chapter VII. Conclusions……………………………………… 105
References………………………………………………………… 107

Fundamentals of SRM
[1] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda and N. N. Fulton, “Variable speed switched reluctance motors,” IEE Proc. B, vol. 136, no. 4, pp. 253-265, 1980.
[2] W. F. Ray and R. M. Davis, “Inverter drive for doubly-salient reluctance motor,” IEE Proc. B, vol. 2, no. 6, pp. 185-193, 1979.
[3] T. J. E. Miller, Switched reluctance motors drives, Intertec Communications Inc., California, 1988.
[4] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[5] H. C. Lovatt, M. C. Clelland, and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” IEE Proc. Electrical Machines and Drives 97, (Conf. Publ. No. 444), pp. 361-365, 1997.
[6] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[7] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 1998.
[8] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” Proc. of the 34th Midwest Symposium on Circuits and Systems, vol. 1, pp. 162-165, 1992.
Converters and Voltage Boosting
[9] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. B, vol. 140, no. 5, pp. 316-322, 1993.
[10] M. Barnes and C. Pollock, “Power converter for single phase switched reluctance motors,” Electron. Lett., vol. 31, no. 25, pp. 2137-2138, 1995.
[11] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 815-823, 1998.
[12] T. J. E. Miller, P. G. Bower, R. Becerra and M. Ehsani, “Four quadrant brushless reluctance motor drive,” IEE Conf. Power Electronics and Variable-Speed Drives, pp. 273-276, 1988.
[13] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Industry Applications, vol. 27, no. 6, pp. 1034-1049, 1991.
[14] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Industry Applications, vol. 28, no. 5, pp. 1017-1022, 1992.
[15] P. Sood, “Power converter for switched reluctance motor,” U.S. Patent 5115181, 1992.
[16] K. I. Hwu and C. M. Liaw, “ DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 147, no. 5, pp. 337-344, 2000.
[17] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” IEEE APEC, Tenth Annual, vol. 2, pp. 887-892, 1995
[18] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boosting,” IEE Proc-B, vol. 140, no. 5, pp. 316-322, 1993.
[19] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” IEEE APEC, Thirteenth Annual, vol. 1, pp. 287-293, 1998.
Commutation Tuning
[20] D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable-reluctance motor drives,” IEE Proc. B, vol. 138, no. 1, pp. 1-14, 1991.
[21] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Trans. Power Electronics, vol. 11, no. 1, pp. 83-88, 1996.
[22] I. Agirman, A. M. Stankovic, G. Tadmor and H.Lev-Ari, “Adaptive torque-ripple minimization in switched reluctance motors,” IEEE Trans. Industrial Electronics, vol. 48, no. 3, pp. 664-672, 2001.
[23] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. Industrial Electronics, vol. 49, no. 1, pp. 28-39, 2002.
[24] H. C. Lovatt and J. M. Stephenson, “Computer-optimized smooth-torque current waveforms for switched-reluctance motors,” IEE Proc. Electric Power Applications, vol. 144, no. 5, pp. 310-316, 1997.
[25] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Industry Applications, vol. 31, no. 5, pp. 1088-1095, 1995.
[26] P. Tandon, A. Velayutham Rajarathnam and M. Ehsani, “Self-tuning control of a switched-reluctance motor drive with shaft position sensor,” IEEE Trans. Industry Applications, vol. 33, no. 4, pp. 1002-1010, 1997.
[27] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” IEEE IAS’97, vol. 1, pp. 548-555, 1997.
[28] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” IEEE Proc. APEC’98, vol. 2, pp. 778-783, 1998.
[29] K. Russa, I. Husain and M. Elbuluk, “A self-tuning controller for switched reluctance machines,” IEEE Proc. PESC’98, vol. 2, pp. 1269-1275, 1998.
[30] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Electric Power Applications, vol. 146, no. 1, pp. 2-10, 1999.
Speed Control
[31] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Electric Power Applications, vol. 143, no. 5, pp. 371-379, 1996.
[32] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” IEEE Proc. IECON’97, vol. 3, pp. 989-994, 1997.
[33] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applications, vol. 148, no.4, 2001.
[34] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modelling and control of a step up/down switching-mode rectifier,” IEE Proceedings, Electric Power Applications, vol. 146, no. 3, pp. 317-324, 1999.
[35] F. Nekoogar and G. Moriarty, Digital control using digital signal processing, Prentice Hall PTR, New Jersey, 1999.
[36] J. G. Bollinger and N. A. Duffie, Computer control of machines and processes, Addison-Wesley, Massachusetts, 1988.
[37] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, 2nd Edition, Addison Wesley, New York, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top