跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈聖詠
研究生(外文):Sheng-Yong Shen
論文名稱:新型單級單相升/降壓型反流器
論文名稱(外文):A Novel Single Stage Single Phase Step up/down Inverter
指導教授:潘晴財
指導教授(外文):Ching-Tsai Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:單級單相升壓降壓反流器
外文關鍵詞:Single StageSingle PhaseStep upStep downInverter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  反流器(Inverter)各方面的應用相當廣,然而傳統反流器為一降壓結構,即其交流輸出電壓小於直流輸入電壓,對於一些輸入直流電壓較為受限的應用,則需額外串接一級升壓轉換器或變壓器,在體積、效率與價格上均較不合算,因此本論文之主要目的即在尋求與發展一可昇/降壓、不需外加變壓器之單級反流器架構。
  本論文之貢獻可分下列四點說明之。首先,提出一不需外加變壓器之新型單級單相升/降壓型反流器,能擴大輸出交流電壓之操作範圍,改進傳統反流器輸出電壓低於輸入電壓之限制。此外由於此新型反流器具有四象限操作之能力,因此亦可作為交-直流轉換器使用。其次,針對所提新型反流器,推導出系統之完整數學模型,俾便閉回路控策略之設計與實現。第三則針對新型反流器設計一閉回路控制器,使反流器輸出性能可以滿足預定之規格。最後並實際製作一硬體電路雛形,以驗證本論文所提之新型單級單相升/降壓型反流器之可行性。
  本論文以下各章節之內容可概述如下:在第二章首先提出一新型單級單相升/降壓型反流器,並分狀態說明新型反流器之工作原理;接著藉由OrCAD之Pspice模擬軟體分析其開回路下之特性,藉此結果以說明閉回路控制是必要。其次第三章中進一步推導新型反流器之數學模型,並以此模型為基礎設計閉回路控制器,同時並以Matlab之Simulink數學軟體驗證本論文所推導數學模型之正確性,並藉以模擬分析新型反流器之閉回路控制效果。在第四章中則利用OrCAD之Pspice模擬軟體模擬較為真實之電路閉回路特性俾與實測波形作一比較,以驗證本論文所提新型反流器之可行性。最後在第五章作一總結,並建議一些未來值得再繼續研究之方向。

  Inverters are widely used in various applications. However, traditional inverter configuration basically belongs to a step/down topology. In other words, the maximum peak voltage of the output AC voltage is limited to the input DC voltage. Hence, in case a higher output voltage is needed, it is necessary to either cascade one more stage of step/up CD converter or add an step/up transformer. This will, of course, result in larger size, lower efficiency and higher cost. In view of there, it is the main objection of this thesis to develop a single stage step up/down inverter without using an extra transformer.
Basically, the contributions of this thesis may be summarized as follows. First, a novel single stage step up/down inverter without using a transformer is proposed to extend operation range of the output AC voltage. In fact, due to the four-quadrant operation capability of the proposed inverter, the new inverter can also be operated as an AC to DC converter. Second, mathematical model of the proposed inverter is also derived for feedback controller design and implementation. Third, in order to achieve a better performance, a closed loop controller is also presented to satisfy the desired specification. Finally, a hardware prototype of the proposed inverter is constructed to verify the feasibility of the proposed inverter.

中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 1
1.3本論文之貢獻 3
1.4本論文之內容概述 3
第二章 新型反流器之架構與工作原理 5
2.1前言 5
2.2新型單級單相升/降壓型反流器架構 6
2.3新型反流器之工作原理 9
狀態1:(k3k2k1k0)=(1111) 11
狀態2:(k3k2k1k0)=(1110) 11
狀態3:(k3k2k1k0)=(1101) 12
狀態4:(k3k2k1k0)=(1100) 15
狀態5:(k3k2k1k0)=(1011) 16
狀態6:(k3k2k1k0)=(1010) 16
狀態7:(k3k2k1k0)=(1001) 17
狀態8:(k3k2k1k0)=(1000) 19
狀態9:(k3k2k1k0)=(0111) 21
狀態10:(k3k2k1k0)=(0110) 21
狀態11:(k3k2k1k0)=(0101) 22
狀態12:(k3k2k1k0)=(0100) 24
狀態13:(k3k2k1k0)=(0011) 26
狀態14:(k3k2k1k0)=(0010) 27
狀態15:(k3k2k1k0)=(0001) 28
狀態16:(k3k2k1k0)=(0000) 29
2.4一些開回路特性 32
第三章 數學模式推導與閉回路控制 46
3.1前言 46
3.2新型轉換器之數學模式 46
模態1:輸出正電壓、電路處於責任週期(狀態1、5、9及13) 47
模態2:輸出為負、電路處於責任週期(狀態3、7、11及15) 48
模態3:電路處於非責任週期(狀態2、4、6、8、10、12、14、16) 49
3.3閉回路控制 60
1.輸出電壓回授控制: 61
2.輸出電流回授控制: 61
3.輸入電壓前饋控制: 65
3.4一些閉回路特性分析 66
第四章 雛型製作與實測驗證 75
4.1前言 75
4.2雛型電路操作之模擬 75
4.3雛型之實體製作 79
1.電力電路部分: 81
2.控制電路部份: 81
4.4一些實測結果 90
第五章 結論 96
參考文獻 98
附錄 PSpice模擬程式 106

[1] T. M. Undeland and N. Mohan, “Overmodulation and loss considerations in high-frequency modulated transistorized induction motor drives,” IEEE Transactions on Power Electronics, vol. 3, pp. 447-452, Oct. 1988.
[2] J. Holtz, W. Lotzkat and A. M. Khambadkone, “On continuous control of PWM inverters in the overmodulation range including the six-step mode,” IEEE Transactions on Power Electronics, vol. 8, pp. 546-553, Oct. 1993.
[3] R. J. Kerkman, D. Leggate, B. J. Seibel and T. M. Rowan, “Operation of PWM voltage source-inverters in the overmodulation region,” IEEE Transactions on Industrial Electronics, vol. 43, pp. 132-141, Feb. 1996.
[4] V. Kaura and V. Blasko, “A new method to extend linearity of a sinusoidal PWM in the overmodulation region,” IEEE Transactions on Industry Applications, vol. 32, pp. 1115-1121, Sept./Oct. 1996.
[5] D. C. Lee and G. M. Lee, “Linear control of inverter output voltage in overmodulation,” IEEE Transactions on Industrial Electronics, vol. 44, pp. 590-592, Aug. 1997.
[6] S. Bolognani and M. Zigliotto, “Novel digital continuous control of SVM inverters in the overmodulation range,” IEEE Transactions on Industry Applications, vol. 33, pp. 525-530, March/April 1997.
[7] D. C. Lee and G. M. Lee, “A novel overmodulation technique for space-vector PWM inverters,” IEEE Transactions on Power Electronics, vol. 13, pp. 1144-1151, Nov. 1998.
[8] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Carrier-based PWM-VSI overmodulation strategies: analysis, comparison, and design,” IEEE Transactions on Power Electronics, vol. 13, pp. 674-689, July 1998.
[9] A. M. Hava, S. K. Sul, R. J. Kerkman and T. A. Lipo, “Dynamic overmodulation characteristics of triangle intersection PWM methods,” IEEE Transactions on Industry Applications, vol. 35, pp. 896-907, July/Aug. 1999.
[10] A. R. Bakhshai, G. Joos, P. K. Jain and H. Jin, “Incorporating the overmodulation range in space vector pattern generators using a classification algorithm,” IEEE Transactions on Power Electronics, vol. 15, pp. 83-91, Jan. 2000.
[11] G. Narayanan and V. T. Ranganathan, “Overmodulation algorithm for space vector modulated inverters and its application to low switching frequency PWM techniques,” IEE Proceedings-Electric Power Applications, vol. 148, pp. 521-536, Nov. 2001.
[12] A. M. Khambadkone and J. Holtz, “Compensated synchronous pi current controller in overmodulation range and six-step operation of space-vector-modulation-based vector-controlled drives,” IEEE Transactions on Industrial Electronics, vol. 49, pp. 574-580, Jun 2002.
[13] G. C. Hsieh, C. H. Lin, J. M. Li and Y. C. Hsu, “A study of series-resonant DC/AC inverter,” IEEE Transactions on Power Electronics, vol. 11, pp. 641-652, July 1996.
[14] E. Koutroulis, J. Chatzakis, K. Kalaitzakis and N. C. Voulgaris, “A bidirectional, sinusoidal, high-frequency inverter design,” IEE Proceedings-Electric Power Applications, vol. 148, pp. 315-321, July 2001.
[15] K. H. Edelmoser and F. A. Himmelstoss, “Analysis of a new high-efficiency DC-to-AC inverter,” IEEE Transactions on Power Electronics, vol. 14, pp. 454-460, MAY 1999.
[16] N. Kasa, T. Iida and H. Iwamoto, “An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system,” The 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 185-190, 1999.
[17] N. Kasa, H. Ogawa, T. Iida and H. Iwamoto, “A transformer-less inverter using buck-boost type chopper circuit for photovoltaic power system,” Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, vol. 2, pp. 653-658, 1999.
[18] N. Kasa, T. Lida and H. Iwamoto, “Maximum power point tracking with capacitor identifier for photovoltaic power system,” IEE Proceedings-Electric Power Applications, vol. 147, pp. 497-502, Nov. 2000.
[19] C. Y. Hsu, “Stability analysis of a switched mode inverter using C’uk converters,” IEEE Power Electronics Specialists Conference, pp. 785-795, 1994.
[20] Z. Yang and P. C. Sen, “A novel switch-mode DC-to-AC inverter with non-linear robust control,” International Conference on Power Electronics and Drive Systems, vol. 1, pp. 487-493, 1997.
[21] P. C. Sen and Z. Yang, “A new DC-to-AC inverter with dynamic robust performance,” 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, vol. 2, pp. 387-390, 1998.
[22] Z. Yang and P. C. Sen, “A novel switch-mode DC-to-AC inverter with nonlinear robust control,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 602-608, Aug. 1998.
[23] Z. Yang, “Bidirectional DC-to-AC inverter with improved performance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp. 533-542, April 1999.
[24] Z. Yang and P. C. Sen, “Analysis of a novel bidirectional DC-to-AC inverter,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 747-757, May 2000.
[25] S. L. Jung and Y. Y. Tzou, “Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve,” IEEE Transactions on Power Electronics, vol. 11, pp. 567-577, July 1996.
[26] Y. Y. Tzou and S. L. Jung, “Full control of a PWM DC-AC converter for AC voltage regulation.” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, pp. 1218-1226, Oct. 1998.
[27] B. J. C. Filho, T. A. Lipo, “Space-vector analysis and modulation issues of passively clamped quasi-resonant inverters,” IEEE Transactions on Industry Applications, vol. 34, pp. 861-869, July/Aug. 1998.
[28] K.Shinoda, T. Suetsugu, M. Matsuo and S. Mori, “Analysis of phase-controlled resonant DC-AC inverters with class E amplifier and frequency multipliers,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 412-420, June 1998.
[29] T. F. Wu, C. H. Chang and Y. J. Wu, “Single-stage converters for PV lighting systems with MPPT and energy backup,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp. 1306-1317, Oct. 1999.
[30] J. C. Liao and S. N. Yeh, “A novel instantaneous power control strategy and analytic model for integrated rectifier/inverter systems,” IEEE Transactions on Power Electronics, vol. 15, pp. 996-1006, Nov. 2000.
[31] H. W. Park, S. J. Park, J. G. Park and C. U Kim, “A novel high-performance voltage regulator for single-phase AC sources,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 554-562, June 2001.
[32] C. M. Wang and G. C. Hsieh, “A series-resonant DC/AC inverter for impedance-load drives,” IEEE Transactions on Power Electronics, vol. 16, pp. 325-335, May 2001.
[33] A. J. Skinner, “Bidirectional continuous-mode flyback invertor,” Fifth European Conference on Power Electronics and Applications, vol.3, pp. 216-220, 1993.
[34] K. Shimizu and H. Matsuo, “Input current analysis of the modified half bridge inverter as electronic ballast for fluorescent lamps,” Power Electronics Specialists Conference, vol. 2, pp. 683-687, 2001.
[35] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, pp. 465-475, April 2002.
[36] X. He, K. Sheng, B. W. Williams, Z. Qian and S. J. Finney, “A composite soft-switching inverter configuration with unipolar pulsewidth modulation control,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 118-126, Feb. 2001.
[37] J. E. Baggio and J. R. Pinheiro, “A simple active auxiliary commutation circuit for three-level PWM single-phase inverters,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 1166-1173, Dec. 2001.
[38] S. R. Bowes, D. Holliday and S. Grewal, “Regular-sampled harmonic elimination PWM control of single-phase two-level inverters,” IEE Proceedings-Electric Power Applications, vol. 148, pp. 309-314, July 2001.
[39] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proceedings-Electric Power Applications, vol. 148, pp. 503-512, Nov. 2001.
[40] D. G. Infield, “Combined switching harmonics from multiple grid-connected single-phase inverters,” IEE Proceedings-Generation, Transmission and Distribution, vol. 148, pp. 427-430, Sept. 2001.
[41] S. R. Bowes, S. Grewal and D. Holliday, “High frequency PWM technique for two and three level single-phase inverters,” IEE Proceedings-Electric Power Applications, vol. 147, pp. 181-191, May 2000.
[42] K. Oguchi, A. Kawaguchi, T. Kubota and N. Hoshi, “A novel six-phase inverter system with 60-step output voltages for high-power motor drives,” IEEE Transactions on Industry Applications, vol. 35, pp. 1141-1149, Sept./Oct. 1999.
[43] S. R. Bowes and S. Grewal, “Three-level hysteresis band modulation strategy for single-phase PWM inverters,” IEE Proceedings-Electric Power Applications, vol. 146, pp. 695-706, Nov. 1999.
[44] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proceedings-Electric Power Applications, vol. 141, pp. 197-205, July 1994.
[45] S. Buso, G. Spiazzi and D. Tagliavia, “Simplified control technique for high-power-factor flyback Cuk and Sepic rectifiers operating in CCM,” IEEE Transactions on Industry Applications, vol. 36, pp. 1413-1418, Sept./Oct. 2000.
[46] C. K. Tse, Y. M. Lai and H. H. C. Iu, “Hopf bifurcation and chaos in a free-running current-controlled Cuk switching regulator,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 448-457, April 2000.
[47] H. H. C. Iu and C. K. Tse, “A study of synchronization in chaotic autonomous Cuk DC/DC converters,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. , 913-918 June 2000.
[48] C. J. Tseng and C. L. Chen, “A novel ZVT PWM Cuk power-factor corrector,” IEEE Transactions on Industrial Electronics, vol. 46, pp. 780-787, Aug. 1999.
[49] G. Ranganathan and L. Umanand, “Power factor improvement using DCM Cuk converter with coupled inductor,” IEE Proceedings-Electric Power Applications, vol. 146, pp. 231-236, March 1999.
[50] C. J. Tseng and C. L. Chen, “Comparisons of zero-voltage-transition Cuk converters,” IEE Proceedings-Electric Power Applications, vol. 146, pp. 433-440, July 1999.
[51] C. J. Tseng and C.L. Chen, ”On the ZVT-PWM Cuk converter,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 674-677, Aug. 1998.
[52] L. Martinez-Salamero, J. Calvente, R. Giral, A.Poveda, and E. Fossas, “Analysis of a bidirectional coupled-inductor Cuk converter operating in sliding mode,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, pp. 355-363, April 1998.
[53] D. S. L.Simonetti, J. Sebastion and J. Uceda, “The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design,” IEEE Transactions on Industrial Electronics, vol. 44, pp. 630-637, Oct. 1997.
[54] C. K. Tse, S. C. Fung and M. W. Kwan, “Experimental confirmation of chaos in a current-programmed Cuk converter,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 43, pp. 605-608, July 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top