跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李凱薰
研究生(外文):Kai-Hsun Lee
論文名稱:以模板為基礎利用可行變的封閉曲線針對生物醫學影像做分割
論文名稱(外文):Template-Driven Segmentation for Biomedical Image by Using Snake
指導教授:陳永昌陳永昌引用關係
指導教授(外文):Yung-Chang Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:55
中文關鍵詞:模板可形變的封閉曲線生物醫學影像分割
外文關鍵詞:Template-Driven SegmentationSnakeBiomedical ImageSegmentationActive contour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
在生物醫學研究上,為了某些研究或觀察上的便利,通常需要從一組目標3D影像資料擷取出我們想要的特定區域。而一組3D影像資料通常是由許多張2D的切片影像所組成的。在本論文中,將提出一個半自動化的過程來完成此3D影像擷取的動作。一開始,利用模板擷取的方式,參考一組3D影像資料來找出另一組3D影像資料每一張切片中的特定區域大概的位置與形狀。接下來,利用人工手動的方式調整此結果,可以得到更適合的物體輪廓的初始位置與形狀,用以執行可形變的封閉曲線演算法。在整個半自動化的過程中,這是唯一的手動工作。可形變的封閉曲線演算法是利用可形變的封閉曲線在每一張切片影像上擷取出某一特定區域。因此,某些能量函式將被定義在可形變封閉曲線上的每一點,用以扭曲此曲線。在此篇論文當中,將提出五種能量函式:(i) 連續能量函式是用來維持可形變封閉曲線的連續性。(ii) 彎曲能量函式是用來維持可形變封閉曲線的平滑程度。(iii) 影像能量函式是用來尋找某特定區域的邊界。(iv) 氣球能量函式是用來控制此可形變封閉曲線的膨脹與收縮。(v) 額外能量函式是用來解決模糊區塊的問題。
這個半自動化過程將比完全的手動擷取來的更有效率。再者,模糊區塊的問題將在這個半自動化的過程中被適當的解決。

For some biomedical purpose, a specific region in a target 3-D image needs to be extracted. The 3-D image usually consists of many 2-D slices. In this thesis, a semi-automatic process will be proposed. First, template-driven segmentation is presented to find an approximate outline and position of the specific region on each slice of the target 3-D image based on a set of template 3-D image data. After modifying the outline and position by hand, a proper initial position of the contour for snake algorithm on each slice is obtained. This is the only manual work in this process. The snake algorithm will extract the specific region on each slice by deforming the contour. Thus, some energy functions at each point on the contour are defined, and the contour will be deformed depending on the energy functions. There are five energy functions presented in this thesis: (i) Continuity energy function is used to maintain the continuity of the contour. (ii) Curve energy function is used to maintain the smoothness of the contour. (iii) Image energy function is used to find a possible boundary of the specific region. (iv) Balloon energy function is used to expand or shrink the contour. (v) Additional energy function is used to cope with the problem of the blurred block.
The process is more efficient than extracting the specific region on each slice by hand. Moreover, the problem of the blurred blocks in the specific region will be addressed.

Table of Contents
Abstract i
Table of Contents ii
List of Figures iii
Chapter 1: Introduction 1
1.1 Overview 1
1.2 Thesis Organization 3
Chapter 2: 3D Segmentation Scheme 4
2.1 Segmentation Scheme 4
2.2 Template-driven Segmentation 6
Chapter 3: Template-driven Segmentation Algorithm 8
3.1 Registration 8
3.1.1 The Basic Optimization Algorithm 8
3.1.2 Multi-Resolution Strategy 10
3.1.3 Affine Registration 11
3.2 Obtaining the Initial Information of Snake 13
Chapter 4: The Snake Algorithm 15
4.1 Snake 15
4.1.1 Basic Snake Behavior 15
4.1.2 Energy Formulation of Snake 17
4.1.2.1 Internal Energy 17
4.1.2.2 Image Energy 20
4.1.2.3 External Constraint Energy 23
4.1.3 Regularization 26
4.2 Additional Energy Function 27
4.2.1 Finding the Blurred Curve 29
4.2.2 Finding the Related Curve 30
4.2.3 Finding the Suggested Curve 32
4.2.4 Building Additional Energy Function 36
4.3 Segmentation 38
Chapter 5: Simulation Results 41
5.1 The Simulation of Registration 41
5.2 The Simulation of Snake 46
Chapter 6: Conclusion 52
References 54

[1] Arthur W. Toga,“Brain Warping,”Academic Press, 1999.
[2] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision, Vol. 1, pp. 321-331, 1988.
[3] H. Wang, K. Ghosh, “Boundary Finding with New Balloon Models”, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No 2, 1998.
[4] L. D. Cohen, “On active contour models and balloons,” CVGIP: Image Understanding, Vol. 53, pp. 211-218, 1991.
[5] S. Kichenassamy, A. Kumar, “A Geometric Snake Model for Segmentation of Medical Imagery”, IEEE Transactions on Medical Imaging, Vol. 16, No. 2, APRIL 1997.
[6] L. D. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2D and 3D images,” IEEE Trans. on PAMI, Vol. 55, pp. 1131-1147, 1993.
[7] T. Mclenerney and D. Terzopoulos, “Topologically adaptable snakes,” in Proc. ICCV’95, June 1995, pp. 840-845.
[8] W. Choi, K. Lam, W. Siu, “An Adaptive Active Contour Model for Highly Irregular Boundaries,” Pattern Recognition pp. 323-331, 2001
[9] V. Chalana, W. Costa, and Y. Kim, “Integrating region growing and edge detection using regularization.“ In Proceedings of the SPIE Conference on Medical Imaging. SPIE, 1995.
[10] A. Meijster, J.B.T.M. Roerdink and W.H. Hesselink, “A General Algorithm for Computing Distance Transforms in Linear Time”. In: Mathematical Morphology and its Applications to Image and Signal Processing, J. Goutsias, L. Vincent and D. S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.
[11] D. J. Williams and M. Shah, “A Fast Algorithm for Active Contours and Curvature Estimation,”, CVGIP: Image Understanding. Vol. 55, pp. 14-26, 1992. 1990.
[12] K.M. Lam, H. Yan, “Fast greedy algorithm for active contours,” Electron Lett. 30(1), pp. 21-22 1994.
[13] Y.Y. Wong, P.C. Yuen, C.S. “Tong, Contour length terminating criterion for snake model,” Pattern Recognition 31(5), pp. 597-606, 1998.
[14] Lee Jong-Sen, “Speckle Analysis and Smoothing of Synthetic Aperture Radar Images,” Computer Graphics and Image Processing, Vol. 17, pp. 24-32, 1981.
[15] L. D. Cohen and I. Cohen, “On matching deformable models to images,” in Topical Meeting on Maching Vision, Technical Diget Series. New York: Optical Society of America. Vol. 12, 1987, pp.160-163.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 【66】鍾春櫻,1997,”護專學生對老人態度、行為意向和影響因素之研究”,《大仁學報第15期》,PP.75-92。
2. 【39】陳建雄,1999,”色彩辨識度與應用在使用者介面設計上的探討”,《工業設計第27卷第2期》。
3. 【35】李瑞金,1999,”銀髮產業之展望”,《厚生雜誌第7期》社會天地。
4. 【62】陳肇男,2000,”台灣老人之年齡增長與生活滿意”,《人口學刊第21期》,
5. 【60】曾思瑜、陳茂柏,1999,”身體障礙老人的居家環境改善-以醫院復健科腦中風出院病患為例”,《中華民國建築學會「建築學報」第29期》,pp.45-63。
6. 【33】關華山,1996,”台灣各類型住宅老人居住問題初探”,《東海學報第37卷》,pp.111-147。
7. 【49】魯燕芳,1998,”從色彩心理的共感覺-來探索物體藝術的原理”,《美育94期》。
8. 【30】陳建志,1999,”為特殊族群設計-高齡者生活用具的需求”,《工業設計第27卷第2期》,pp.103-106。
9. 【26】李怡娟,1998,”護理於老人健康政策的重要性”,《護理雜誌第45卷第6期》,pp.16-20。
10. 【25】唐啟明,1998,”關心銀髮族的福祉-台灣省推行老人福利概況”,《社區發展季刊第83期》,pp.34-43。
11. 【24】黃耀榮,1997,”老人休閒環境特性與需求之城鄉差異探討”,《中華明國建築學會「建築學報」第21期》,pp.01-20。
12. 【17】陳榮昌(內政部統計處編審),1997,”老人狀況調查分析”,《中國統計通訊8卷10期》。
13. 【16】劉淑娟,1999,”罹患慢性病老人服藥遵從行為及其相關因素之探討”,《護理研究7卷6期》。
14. 【67】李瑞金,1998,”英國老人居家照顧的意涵-居家老人擴大照顧的經驗”,《合作經濟》,pp.08-19。
15. 【7】鄭淑子,1996,”高齡化社會中老人社會支持體系之探討”,《中華家政25期》,pp.66-76。