跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊英傑
論文名稱:針對CMOS影像感測器的非線性類比至數位轉換器設計
論文名稱(外文):A Nonlinear A/D Converter Design for CMOS Image Sensor
指導教授:黃錫瑜黃錫瑜引用關係
指導教授(外文):Shi-Yu Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:39
中文關鍵詞:影像感測非線性轉換器類比至數位
外文關鍵詞:nonlinearconverteranalog-to-digitalsuccessive-approximation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相對於市場主流的CCD (Charge-Coupled Device)影像感測器而言,CMOS影像感測器因為有成本較低,整合容易及消耗功率較低的優點,近年來逐漸受到矚目。因為工作電壓較低所造成的感測範圍較小的問題,也有許多人探討和改善。感測器中除了光-電轉換電路外,還可以整合類比至數位轉換器進去,使得輸出資料即為數位資料。
本篇論文描述一個針對CMOS影像感測器,可改善整體轉換特性的非線性類比至數位轉換器設計。這個類比至數位轉換器利用非線性轉換特性來使輸出資料中包含較多低亮度的資料,使得8位元的輸出資料在需要高解析度的低亮度可以達到10位元的有效解析度。藉由平滑的轉換曲線,它可以微調入射光強度至輸出資料間的轉換特性,產生比較理想的轉換特性。
這個類比至數位轉換器在實現時整合在一個176x144像素的CMOS影像感測器中,以台積電(TSMC) 0.35um 1P4M製程製作。它的操作電壓3.3V,輸入範圍0-1.5V,轉換速度1Ms/s。為了面積與消耗功率上的考量,它採用持續近似架構。其中含有的主要建構元件為取樣電路、控制電路、轉換電路、數位至類比轉換器和自我測試電路,而其中的數位至類比轉換器以電流驅動架構實現。自我測試電路可以對類比至數位轉換功能的正常與否做自我測試。以Avant! Hspice做佈局後模擬所得結果,它消耗的功率為17.12mW,其中類比部分電路佔了61.7%,其轉換曲線的線性誤差最大值為0.42LSB而它所佔面積為240000 um2。

Advantage of CMOS image sensor such as high integration and low power makes this kind of image sensor have its position. But tradeoff between dynamic range and output swing is undesirable. In this thesis, a nonlinear A/D converter design for CMOS image sensor is described and designed with a 0.35 um 1P4M process. The nonlinear transfer function of the proposed A/D converter changes the resolution distribution of the output data, thereby improving the overall sensor’s resolution in low illumination and overcoming the effect of the sharp break point in the pixel cell’s photo-electrical characteristic.
The A/D converter uses successive-approximation register architecture with current-mode D/A converter. It has input range of 0V to 1.5V and 8-bit output data. The total power consumption is 17.12mW and the total area is about 240000 um2.

Contents
1 Introduction 1
1.1 Motivation…………………………………………………………… 2
1.2 Thesis Organization……………………………………………… 2
2 Background 3
2.1 CMOS Image Sensor……………………………………………… 3
2.1.1 Architecture…………………………………………………… 3
2.1.2 Active Pixel Sensor………………………………………… 3
2.2 A/D Converter categorization………………………………… 7
3 Previous Work 12
4 Design and Consideration 15
4.1 Architecture……………………………………………………… 15
4.2 Transfer Logic…………………………………………………… 16
4.3 Control Circuit and Registers………………………………… 17
4.4 Sample-and-hold Circuit………………………………………… 18
4.5 Comparator………………………………………………………… 19
4.6 D/A Converter……………………………………………………… 22
4.7 Built-in Self Test……………………………………………… 24
4.8 Noise Consideration……………………………………………… 25
4.8.1 Switch…………………………………………………………… 25
4.8.2 Noise from Cell Array and Digital Circuit…………… 26
4.9 Layout Consideration…………………………………………… 26
4.9.1 Floor-plan……………………………………………………… 26
4.9.2 Layout of D/A Converter…………………………………… 27
5 Experimental Result 28
5.1 Parameter…………………………………………………………… 28
5.2 Simulation Result………………………………………………… 29
5.3 Layout of components and A/D converter…………………… 33
6 Conclusion 35
Appendix 36

[1] M. Sasaki, H. Ihara, and Y. Matsunaga, “A 2/3-in 400k-Pixel Sticking-Free Stack-CCD Image Sensor”, IEEE Journal of Solid-State Circuits, vol. 28, pp. 1066-1070, November 1993.
[2] B. Ackland and A. Dickinson, “Camera on a Chip”, IEEE International Solid-State Circuits Conference, pp. 22-25, 1996.
[3] E. R. Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip”, IEEE Transaction on Electron Devices, vol.44, pp. 1689-1698, October 1997.
[4] R. H. Nixon , S. E. Kemeny, B. Pain, C. O. Staller, and E. R. Fossum, “256´256 CMOS Active Pixel Sensor Camera-on-a-Chip”, IEEE Journal of Solid-State Circuits, vol.31, pp. 2046-2050, December 1996.
[5] O. Yadid-Pecht and E. Fossum, “Wide intrascene dynamic range CMOS APS using dual sampling”, IEEE Transaction on Electron Devices, vol.44, pp. 1721-1723, October 1997.
[6] S. Decker, R. McGrath, K. Brehmer, and C. Sodini, “A 256´256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output”, IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp. 176-177, 1998.
[7] Y. Nejime, M. Hotta, and S. Ueda, “An 8-b ADC with Over-Nyquist Input at 300-Ms/s Conversion Rate”, IEEE Journal of Solid-State Circuits, vol. 26, pp. 1302-1308, September 1991.
[8] C. W. Moreland, “An 8b 150 Msample/s serial ADC”, IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp. 272-273, 1995.
[9] J. Spalding and D. Dalton, “A 200Msample/s 6b Flash ADC in 0.6um CMOS”, IEEE International Solid-State Circuits Conference Dig. Tech. Papers, pp. 320-321, 1996.
[10] B. Razavi and B. A. Wooley, “A 12-b 5Msample/s Two-Step CMOS A/D Converter”, IEEE Journal of Solid-State Circuits, vol. 27, pp. 1667-1678, December 1992.
[11] B. Brandt and J. Lutsky, “A 75-mW, 10-b, 20-MSPS CMOS subranging ADC with 9.5 effective bits at Nyquist”, IEEE Journal of Solid-State Circuits, vol. 34, pp. 1788-1795, December 1999.
[12] H. V. D. Ploeg and R. Remmers, “A 3.3-V, 10-b, 25Msample/s Two-Step ADC in 0.35-um CMOS”, IEEE Journal of Solid-State Circuits, vol. 34, pp. 1803-1811, December 1999.
[13] T. B. Cho and P. R. Gray, “A 10b, 20Msample/s 35mW pipeline A/D converter”, IEEE Journal of Solid-State Circuits, vol. 30, pp. 166-172, March 1995.
[14] K. Nagaraj and Anidjar, S. H. Lewis, “A 250mW, 8-b, 52 Msample/s Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 312-320, March 1997.
[15] G. Azzopardi, I. Grech, J. Micallef, and F. Maloberti, “A Low Voltage High Resolution Pipelined Incremental ADC”, Proceedings of IEEE International Conference on Electronics Circuits and Systems, Vol. 3, pp. 1499-1502, 1999.
[16] P. Vorenkamp and R. Roovers, “A 12-b, 60-MSample/s Cascaded Folding and Interpolating ADC”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 1876-1886, December 1997.
[17] T.H Kim, J.J Sung, S.H Kim, W. Joo, S.B You, and S. Kim, “A 10-bit, 40MSamples/s Cascading Folding & Interpolating A/D Converter with Wide Range Error Correction”, in The Second IEEE Pacific Conference on ASICs, pp. 57-60, August 2000.
[18] S. Mortezapour and E. K. F. Lee, “A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process”, IEEE Journal of Solid-State Circuits, vol. 35, pp. 642-646, April 2000.
[19] G. Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1 MS/s”, IEEE Journal of Solid-State Circuits, vol. 36, pp. 1138-1143, July 2001.
[20] G. Bucci, M. Faccio, and C. Landi, “The Implementation of A Smart Sensor Based on A Piece-Linear A/D Converter”, in IEEE Instrumentation and Measurement Technology Conference, pp. 1173-1177, May 1997.
[21] A. N. Karanicolas, “A 2.7-V 300-MS/s Track-and-Hold Amplifier”, IEEE Journal of Solid-State Circuits, vol. 32, pp. 1961-1967, December 1997.
[22] B. Razavi and B. A. Wooley, “Design Techniques for High-Speed, High-Resolution Comparators”, IEEE Journal of Solid-State Circuits, vol. 27, pp. 1916-1926, December 1992.
[23] D. A. Johns and K. Martin, Analog Integrated Circuit Design, Chapter 12, pp. 463-484, John Wiley & Sons, Inc., 1996.
[24] B. Razavi, Design of Analog CMOS Integrated Circuits, Section 12.2, pp. 404-407, McGraw-Hill Companies, Inc., preview ed., 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top