跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥穎
研究生(外文):Yen-Yin Lin
論文名稱:雙光子光折變分布回饋式光參數震盪器
論文名稱(外文):Distributed Feedback Parametric Oscillator In PPLN
指導教授:黃衍介黃衍介引用關係
指導教授(外文):Yen-Chieh Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:50
中文關鍵詞:週期性反轉鈮酸鋰分布回饋式布拉格光柵雙光子光折變
外文關鍵詞:Periodically poled lithium niobateDistributed feedback structuretwo-photon photorefractive effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
週期性反轉鈮酸鋰(PPLN) 已經廣為應用在許多需要波長可調光的領域中,像在環境監測、全彩顯示器、光譜應用上都十分迫切需要一種穩定的可調波長光源。本論文的完成示範了應用雙光子光折變的方式在週期性反轉鈮酸鋰上製造分布回饋式布拉格光柵,我們一發現的採用蝕刻的方式也能製造分布回饋式布拉格光柵。
分布回饋式雷射(DFB Laser)的設計在1972年時便被提出,目前已被廣泛應用在半導體雷射的製造上,此種設計的優點在於頻寬窄、體積小和設計簡單‧在本論文中我們首次將此種分布回饋式光柵應用在週期性反轉鈮酸鋰上,這樣我門便可以用分布回饋式光柵來取代傳統的共振腔結構,將使得週期性反轉鈮酸鋰光參數震盪器簡化。要在週期性反轉鈮酸鋰上製作分布回饋式布拉格光罩可以採用改變折射率的方法或者製造出實體的結構,在本論文中兩種方式分別藉由雙光子光折變的方式及氫氟酸的蝕刻來達成。
在本論文中我門成功的應用雙光子光折變分佈回饋式光參數振震盪器來震盪3.788微米的光波,在更長的波長的應用上,由於鈮酸鋰的吸收更強烈,故需要更強幫浦光強度,過強的幫浦光會破壞雙光子光折便分布回饋是布拉格光柵。故我們更進一步的發現應用表面蝕刻的分佈回饋式光參數振震盪器可震盪到6微米的波長,由於是實體結構便不需擔心被過強幫浦光破壞的情形發生。

Periodically poled lithium niobate (PPLN) based wavelength-tunable lasers have numerous applications. The applications of PPLN tunable light sources are desired in various fields, such as remote pollution detection, laser projector, and spectroscopy. The accomplishment of this work is the demonstration of fabricating a distributed feedback structure in a PPLN-based laser oscillator by using the two-photon photorefractive writing scheme. The visible light sources are also desired in plenty of applications, such as outdoor laser show, laser bacon, color display, and so on.
Distributed feedback (DFB) Laser has been proposed in 1972. The advantages of a DFB laser include narrow linewidth, compact size, and simple design. A distributed feedback PPLN optical parametric oscillator (DFB PPLN OPO) is a novel laser device. The design of DFB PPLN OPO combines the distributed feedback theory and quasi-phase-matching technique together. Therefore, DFB PPLN OPO does not require complex optical alignment, when compared with a traditional parametric oscillator.
We demonstrate in this dissertation the DFB OPO operation at 3.788 μm wavelength by using a two-photon photorefractive DFB grating. At the same time, we also show the possibility of generating 6-μm laser radiation from a PPLN OPO with a surface-etched DFB grating.

Table of Contents
Abstract I
Table of Contents II
List of Figures IV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Optical Parametric Process 2
1.3 Quasi-Phase Matching Techniques 4
1.4 Distributed Feedback Oscillator 5
1.5 Overview of Dissertation 6
Chapter 2. Theory of Quasi-Phase Matched Optical Parametric Generation 7
2.1 Coupled Wave Equations of Parametric Generation 7
2.2 Wavelength-Tuning Schemes 10
3.3 Optical Parametric Genration Single Pass Gain and Bandwidth 12
Chapter 3 Photorefractive Effective 16
3.1 Band Transport Model 16
3.2 Two Interference beam photorefractive grating 19
3.3 Two Photon photorefractive effect 21
Chapter 4 Distributed Feedback Laser 22
4.1 Bulk Periodicity 22
4.2 Bulk Distributed Feedback Laser 23
Chapter 5 Experimental Result and Conclusion 28
5.1 Two-Photon Interference DFB PPLN OPO 28
5.2 QPM OPG in Strong absorption region of lithium niobate 37
5.3 Conclusion 43
References 45

1 Stephen J. Brosnan & Robert L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies”, IEEE J. of Quantum Electronics, 15(6), 1979.
2 K. Avicola, J.M. Brase, J.R. Morris, H.D. Bissinger, J.M. Duff, H.W. Friedman, D.T. Gavel, C.E. Max, S.S. Olivier, R.W. Presta, D.A. Rapp, J.T. Salmon, and K.E. Waltjen, J. Opt. Soc. Am. A Vol. 11, No. 2 (1994) 825-831.
3 Stephen J. Brosnan & Robert L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies”, IEEE J. of Quantum Electronics, 15(6), 1979.
4 Lawrence E. Myers, “Progress in Quisi-Phasematched Optical Parametric Oscillators Using Periodically Poled LiNbO3”, SPIE Vol.2700, pp.216, 1997.
5 R. L. Byer, “Parametric Oscillators and Nonlinear Materials, Nonlinear Optics”, Philip G. Harper & Brian S. Wherrett, Academic Press, 1975.
6 F.Pan, G.Knofle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong amd P.Gunter,Appl. Phys. Lett., 69 (1996)13.
7 M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolarences,”IEEE J. Quantum Electron. 28, 2631-2654 (1992).
8 .An-Chung Chiang, “Quasi-Phase-Matched Optical Parametric Amplifier in LiNbO3”, dissertation of master degree, National Tsing Hua University, Taiwan, 1999.
9 .R. L. Byer, “Quantum Electronics”, Herbert Rabin & C. L. Tang, eds., pp.587-702, Academic Press, 1975.
10 G. J. Edwards, and M. Lawrence, “A temperature-depent dispersion equation for congruently grown lithium niobate,” Opt Quantum Electron. 16, 373-374 (1984).
11 . R. L. Byer, “Parametric Oscillators and Nonlinear Materials, Nonlinear Optics”, Philip G. Harper & Brian S. Wherrett, Academic Press, 1975.
12 A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A.Ballman, J.J. Levinstein, and K. Nassau, “ Optically Induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3, “ Appl. Phys. Lett. 9 72-74 (1996).
13 Photorefractive Materials and Their Applications I, Topics in Applied Physics, Vol. 61, Editor P. Gunter and J.-P. Huignard, (Springer-Verlag, 1988) pp. 1.
14 Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, p.p 730-731, John Wliey & Sons, Inc., 1991.
15 D. von der Linde. A.M. Glass, K.F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
16 H. Kogelnik and C. V. Shank, “Coupled wave theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2327 (1972).
17 H. Kogelink and C.V. Shank, “ Coupled wave theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2328, (1973)
18 H. Kogelink and C.V. Shank, “ Coupled wave theory of Distributed Feedback Lasers,” J. Appl. Phys. 43, 2328, (1973)
19 Photorefractive Materials and Their Applications I, Topics in Applied Physics, Vol. 61, Editor P. Gunter and J.-P. Huignard, (Springer-Verlag, 1988) pp. 53.
20 L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, Science 282 (1998) pp. 1089.
21 Optical Waves in Crystals, A. Yariv, and P.C. Yeh, John Wliey & Sons, Inc. (1984) p. 220.
22 Optical Waves in Crystals, A. Yariv, and P.C. Yeh, John Wliey & Sons, Inc. (1984) p. 232.
23 Photorefractive Materials and Their Applications I, Topics in Applied Physics, Vol. 61, Editor P. Gunter and J.-P. Huignard, Springer-Verlag (1988) p. 25, 82, 176.
24 Properties of Lithium Niobate, Editor S.C. Abrahams, INSPEC, The Institute of Electrical Engineers, London and New York (1989) p. 148.
25 L. Lefort, k. Puech, G.W. Ross, Y.P. Svirko, and D.C. Hanna, Opt. Lett. Vol. 23, No. 12, 1610-1612 (1998).
26 Stephen J. Brosnan & Robert L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies”, IEEE J. of Quantum Electronics, 15(6), 1979.
27 A.C. Chiang, Y.C. Huang, Y.W. Fang, and Y.H. Chen, “Compact, 220-ps visible laser employing single-pass, cascaded frequency conversion in a monolithic periodically poled lithium niobate,” Opt. Lett. Vol. 26, No. 2, 66-68 (2001)
28 C.H. Henry and C.G.B. Garrett, Phy. Rev. 171 3 1058-1064 (1968).
29 C.G.B. Garrett, IEEE J. Quan. Elec. QE-4 NO. 3 (1968) 70-84.
30 G.D. Boyd, T.J. Bridges, M.S. Pollack, and E.H. Turner, Phy. Rev. Let. 26 No. 7 (1971) 387-389.
31 S.S. Sussman, Tunable Light Scatering from Transverse Optical Modes in Lithium Niobate, Microwave Report No. 1851, Stanford University, 34 (1970).
32 Jun-ichi Shikata, Kodo Kawase, Kenichi Karino, Tetsuo Taniuchi, and Hiromasa Ito, IEEE Trans. Microwave Theory and Tech., Vol. 48 No. 4, 653 (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文