跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許柏榕
研究生(外文):Po-Jung Hsu
論文名稱:溫度無感之布拉格光纖光柵磁場感測器
論文名稱(外文):Temperature-Independent Fiber Bragg Grating Magnetic Field Sensing System
指導教授:王立康
指導教授(外文):Li-Karn Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:布拉格光纖光柵溫度穩定度溫度無感
外文關鍵詞:Fiber Bragg GratingThermal StabilityTemperature-Independent
相關次數:
  • 被引用被引用:3
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於光纖光柵的發明,使得光纖感測器在設計上有了更大的運用空間。因為光纖光柵本身是一種直接在光纖上曝光所製作出來的被動元件,所以,可以設計出「全光纖」的感測器,不但具有光纖的一切優點,而且靈敏度高。
最近,光纖光柵已經成為光纖感測領域的重要光學元件。而布拉格式光纖光柵更是焦點的所在,它可以藉由偵測反射的布拉格波長的移動,來決定不同的物理量,例如:溫度、應力、電場、磁場等等的變化。
由於布拉格式光纖光柵(Fiber Bragg grating)擁有在溫度的改變下,反射的布拉格波長會隨之改變的特性,所以在做成一個感測器時,如何分開溫度跟溫度以外的待測物理量對布拉格光纖光柵的影響是必要的。例如,我們想要檢測某環境中的磁場時,若置入布拉格式的光纖光柵當感測器,利用光譜分析儀(optical spectrum analyzer)檢測布拉格波長在頻譜上的變化,溫度跟磁場對光柵的影響將使我們無法確定所受磁場的大小。所以本論文的研究動機就是希望能夠達成區別溫度以及磁場對布拉格光纖光柵所造成的效應。
在本篇論文的研究當中,我們提出了一個溫度無感的布拉格光纖光柵磁場感測器系統,它是以一種奇特的光功率偵測機制為基礎。系統是由一對在布拉格波長反射頻譜上位置幾乎一樣的布拉格光纖光柵所組成,並且把這兩個光纖光柵放置在同一個位置,除此之外,其中一個光纖光柵用AB膠黏貼在磁滯伸縮金屬棒的兩端,另外一個布拉格光纖光柵則黏貼在另外一根作為溫度補償而且不受磁場影響的金屬棒,以此,形成了系統中溫度無感的磁場感測單元。和傳統的布拉格波長解調機制不同的是,我們可以藉由偵測系統中光功率的變化來得知外界磁場的多寡。以下是實驗所得的結果:在磁場變化範圍從0mT到132mT間,感測的線性誤差在(±0.2 %),對磁場的靈敏度為1mT,在溫度從 27℃變化到85℃的時候,所測得的系統溫度穩定度為±0.3 %。

In this study, we propose a temperature-independent fiber-Bragg-grating magnetic field sensing system, based on a novel optical power detection scheme. Implemented with two spectrally slightly separated fiber Bragg gratings, which were closely placed side by side, except for this, one is stuck on the magnetostrictive rod with epoxy at both ends, and the other is stuck on another metal rod which can't be affected by magnetic field to form a temperature-independent magnetic field sensor unit. Instead of conventional wavelength interrogation techniques, magnetic field can be simply calibrated by monitoring the reflected power of the system. Magnetic field measurement up to 132mT with high linearity (±0.2 %), good sensitivity (1mT ), and high thermal stability (±0.3 %) in the temperature range from 27℃~85℃ was achieved here.

第一章 緒論…………………………………………………………3
第二章 光纖感測器的原理………………………………………6
第三章 布拉格光纖光柵的性質及應用……………………….16
3.1光纖光柵的製作…………………………………………16
3.2布拉格光纖光柵的理論分析……………………………21
3.3布拉格光纖光柵的感測原理……………………………25
第四章 用磁場來調制布拉格波長的移動……………………49
4.1磁力所造成的布拉格波長移動…………………………49
4.2磁滯效應…………………………………………………51
第五章 實驗架構與系統量測原理……………………………58
5.1磁場的感測………………………………………………58
5.2溫度的補償………………………………………………59
第六章 數據分析的方法…………………………………………64
6.1 線性誤差……………………………………………64
6.2靈敏度……………………………………………………66
6.3溫度穩定度………………………………………………67
第七章 實驗結果與討論…………………………………………69
7.1實驗結果…………………………………………………69
7.2 討論…..…………………………………………………72
第八章 結論………………………………………………………98
參考文獻……………………………………………………………99

1. K. Bohnert, P. Pequignot,〝Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,〞J. Lightwave Technol., 16, 598-604 (1998).
2. Tatterson KG.,〝Pollutants can’t hide from fiber sensors,〞Photon Spectra, 32, 116-118 (1998).
3. N. Takahashi, A. Hirose, S. Takahashi,〝Underwater acoustic sensor
A. with fiber Bragg grating,〞Opt. Rev., 4, 691-694 (1997).
4. W. Wroblewski, A. Dybko, Z. Brzozka,〝Design of ion-sensing chemooptical interface for fiber optic chemical sensors,〞Chem. Anal- Warsaw, 42, 757-766 (1997).
5. Clowes JR., J. McInnes, M. Zervas, et al.,〝Effects of high temperature and pressure on silica optical fiber sensors,〞IEEEP Photon. Technol. Lett., 12, 403-405 (1998).
6. O. BenDavid, E. Shafir, I. Gilath, et al.,〝Simple absorption optical fiber pH sensor based on doped sol-gel cladding material,〞Chem. Mater., 9, 2255-2257 (1997).
7. Friebele EJ., Putnam MA., Patrick HJ., et al.,〝Ultrahigh-sensitivity fiber-optic strain and temperature sensors,〞Opt. Lett., 23, 222-224 (1998).
8. S. Spear, S. Pattern, M. Arnold,〝Flow-through fiber-optic ammonia sensor for analysis of hippocampus slice perfusates,〞Anal. Chim. Acta., 357, 79-84 (1997).
9. R. Kashyap,〝Photosensitive optical fiber:devices and applications,〞Optical Fiber Technology 1, 17 (1994).
10. Kenneth O. Hill and Gerald, Gerald Meltz,〝Fiber Bragg Grating Technology Fundamentals and Overview,〞J. Lightwave Technol., vol. 15, no. 8 (1997).
11. Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo,〝Fiber Grating Sensors,〞J. Lightwave Technol., 15, 1442-1463 (1997).
12. Y. J. Chiang, Likarn Wang, and et al.,〝Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme,〞Optics Communications, 197(4-6), 327-330 (2001).
13. D. A. Jackson, A. B. L. Ribeiro, L. Reekie and J. L. Archambault,〝Simple multiplexing scheme for a fiber-optic grating sensor network,〝Opt. Lett., 18, 1192-1194 (1993)
14. A. D. Kersey, T. A. Berkoff and W. W. Morey,〝Multiplexed fiber Bragg grating Strain-Sensor system with a fiber Fabry-Perot wavelength filter,〞Opt. Lett., 18, 1370-1372 (1993).
15. M. Xu, H. Geiger, and et al.,〝Novel interrogating system for fibre Bragg grating sensors using an acousto-optic tunable filter,〞Electron. Lett., 29, 1510-1511 (1993).
16. K. Koo and A. D. Kersey,〝Bragg grating-based laser sensors systems with interferometric interrogating and wavelength division multiplexing,〞J. Lightwave Technol., 12, 1243-1249 (1995).
17. V. Bhatia and et al.,〝Simultaneous strain and temperature measurement with long-period grating,〞Opt. Lett., 22, 648-650 (1997).
18. J. Mora, A. Diez, J. L. Cruz, and M. V. Andres,〝A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination,〞IEEE Photon. Technol., 12, 1680-1682 (2000).
19. R. W. Fallon, L. Zhang, A. Gloag, I. Bennion,〝Multiplexed identical broadband chirped grating interrogation system for large strain sensing application,〞IEEE Photon. Technol. Lett., 9, 1616-1618 (1997).
20. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, B. Lee,〝Temperature-independent dtrain sensor system using a titled fiber Bragg grating demodulator,〞IEEE Photon. Technol. Lett., 10, 1461-1463 (1998).
21. W. C. Du, X. M. Tao, H. Y. Tam,〝Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,〞IEEE Photon. Technol. Lett., 11, 105-107 (1999).
22. A. Arie, B. Lissak, M. Tur,〝Static fiber-Bragg grating strain sensing using frequency-locked lasers,〞J. Lightwave Technol., 17, 1849-1855 (1999).
23. S. Kim, J. Kwon, B. Lee,〝Temperature-independent strain sensor using chirped grating partially embedded in a glass tube,〞IEEE Photon. Technol. Lett. 12, 678-680 (2000).
24. G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang,〝Fiber Bragg grating interrogation and multiplexing with a 3x3 coupler and a scanning filter,〞J. Lightwave Technol., 18, 1101-1105 (2000).
25. A. D. Kersey, T. A. Berkoff and W. W. Morey,〝High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,〞Electron. Lett., 28, 236-238 (1992).
26. A. Ezbiri, A. Munoz, S. E. Kanellopoulous, and V. A. Handerek,〝High resolution fibre Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,〞IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring, Digest no. 1997/033 (1997).
27. L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi,〝Frequency-locked laser diode for fiber Bragg grating sensors,〞J. Lightwave Technol., 16, 1620-1630 (1998).
28. Bahaa E. A. Saleh, Malvin Carl Teich,〝Fundaments of Photonics,〞John Wiley&Sons, Inc., 226 (1991).
29. Andreas Othonos, Kyricacos Kalli,〝Fiber Bragg Gratings:Fundamentals and Applications in Telecommunications and sensing,〞Arteech House, Inc., 142 (1999).
30. Hill, K. O., et al.,〝Efficient mode-conversion in telecommunication fiber using externally written gratings,〞Electron. Lett.,Vol.26, 1270-1272 (1990).
31. Bilodeau, F., et al.,〝Efficient narrowband LP01 LP02 mode convertors fabricated in photosensitive fiber:Spectral response,〝Electron. Lett., Vol.27, 682-684 (1991).
32. Lemaire, P. J., et al.,〝High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,〞Electron. Lett., Vol.29, 1191-1193 (1993).
33. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki,〝Photosensitivity in optical fiber waveguides:application to reflection fiber fabrication,〞Apl. Phys. Lett., 32(10), 647 (1978).
34. G. P. Agrawal,〝Nonlinear Fiber Optics,〞Academic Press, San Diego, 451 (1995).
35. G. Meltz, W. W. Morey, and W. H. Glenn,〝Formation of Bragg grating in optical fibers by a transverse holographic method,〞Opt. Lett., 14(15), 189 (1989).
36. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert,〝Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,〞Appl. Phys. Lett., 62(10), 1035 (1993).
37. Hermann A. Haus,〝Waves and Fields in Optoelectronics,〞Prentice-Hall, Inc., 236-240 (1984).
38. C. T. Shyu, and L. Wang,〝Sensitive linear electric current measurement using two metal-coated single-mode optical fibers,〞J. Lightwave Technol., vol. 12,2040 (1994).
39. W. W. Morey, G. Meltz, and W. H. Glenn,〝Fiber optic Bragg grating sensors,〞in Proc. SPIE, Fiber Optics and Laser Sensors Ⅶ, vol. 1169, 98-107 (1989).
40. G. B. Hocker,〝Fiber-optical sensing of pressure and temperature,〞Appl. Opt., vol. 38, 1445-1448 (1979).
41. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin,〝Optical in-fiber grating high pressure sensor,〞Electron. Lett., vol. 29, 398-399 (1993).
42. Ying Zhang, Dejun Feng, et al.,〝High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating,〞IEEE Photonics Technol. Lett., vol. 13, no. 6, 618-619 (2001).
43. H. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani and A. M. Vengsarkar,〝Thermally-compensated bending gauge using surface-mounted fiber gratings,〞Inter. J. Optoelectronics, 9, 281-283 (1994).
44. Jaehoon Jung, Hui Nam, Ju Han Lee, Namkyoo Park, and Byoungho Lee,〝Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,〞Applied Optics, vol. 33, no. 13, 2749-2751 (1999).
45. M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin,〝Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,〞Electron. Lett., 30, 1085-1087 (1994).
46. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar,〝Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,〞IEEE Photonics technol. Lett., vol. 8, no. 9, 1223-1225 (1996).
47. Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang and I. Bennion,〝Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/Fibre-Fabry-Perot sensor system,〞Electronics Lett., vol. 33, no. 24, 2063-2064 (1997).
48. S. W. James, M. L. Dockney and R. P. Tatam,〝Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,〞Electronics Lett., vol. 32, no. 12, 1133-1134 (1996).
49. S. Jin, H. Mavoori, R. P. Espindola, T. A. Strasser, and J. J. DeMarco,〝Magnetically programmable fibre Bragg gratings,〞Electronics Lett., vol. 34, no. 22, 2158-2159 (1998).
50. R. C. Smith,〝Hysteresis modeling in magnetostrictive materials via preisach operators,〞E-LETTER on Systems, Control, and Signal Processing, issue no. 116, 249 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top