|
REFERENCE FOR CHAPTER 1 [1] E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide”, Electron Lett. 25, 174-175, 1989. [2] Kawanishi S, Chou MH, Fujiura K, et al, “All-optical modulation and time-division-multiplexing of 100Gbit/s signal using quasi-phasematched mixing in LiNbO3 waveguides”, Electron. Lett. 36, 1568-1569, 2000. [3] Parameswaran KR, Fujimura M, Chou MH, et al, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN”, IEEE Photonic Tech. Lett. 12, 654-656, 2000. [4] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics”, Phys. Rev. Lett. 7, 118-119, 1961. [5] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguide in LiNbO3“, Appl. Phys. Lett. 41, 607-608, 1982. [6] D. Hofmann. G. Shreiber, C. Hasse, H. Herrmann, R. Ricken, and W. Sohler, “Continuous-wave mid-infrared optical parametric oscillators with periodically poled Ti: LiNbO3 channel waveguides”, Opt. Lett. 24, 896-898, 1999. [7] T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramasway, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides”, Opt. Lett. 18, 346-348, 1993. [8] M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides”, Opt. Lett. 16, 1844-1846, 1991. [9] X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second-order optical nonlinearity in annealed proton-exchanged LiNbO3”, IEEE Photonic Tech. Lett. 3, 25-27, 1991. [10] Michael L. Bortz, Quasi-phasematched optical frequency conversion in lithium niobate waveguides, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1992). [11] Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, “Reverse proton exchange for buried waveguides in LiNbO3”, J. Opt. Soc. Am. A 15, 1838-1842, 1998. [12] K. R. Parameswaran, R. K. Route, et al, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate”, Opt. Lett. 27, 179-181, 2002. [13] L. Chanvillard, P. Aschieri, P. Baldi, et al, “Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions”, Appl. Phys. Lett. 76, 1089-1091, 2000. [14] Yu. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange”, J. Lightwave Tech.18, 562-568, 2000. [15] J. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 waveguide in benzoic acid vapor”, J. Opt. Soc. Am. B 16, 401-406, 1999. REFERENCE FOR CHAPTER 2 [1] K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodicalliy poled lithium niobate waveguide,” Opt. Lett. 27, 43 (2002). [2] R. W. Boyd, Nonlinear Optics, Academic Press, 1992. [3] P. G. Suchoski, T. K. Frindakly, and F. J. Leonberger, “Stable, low-loss proton exchanged LiNbO3 waveguide devices with no electro-optic degradation”, Opt. Lett. 13, 1050-1052, 1988. [4] M. M. Howerton, W. K. Burns, P. R. Skeath, and A. S. Greenblatt, “Dependence of refractive index on hydrogen concentration in proton exchanged LiNbO3”, IEEE J. Quantum Electronics 27, 593-601, 1991. [5] J. M. Zavada, H. C. Casey, S. W. Novak, and A. Loni, “Correlation of substitutional hydrogen refractive index profiles in annealed proton-exchanged z- and x-cut LiNbO3”, J. Appl. Phys. 77, 2697-2708, 1994. [6] D. F. Clark, A.C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton exchange slab optical waveguides in z-cut LiNbO3” J. Appl. Phys. 54, 6218-6220, 1983. [7] T. Maciak and M. Sokolowski, “Fabrication of proton exchange optical waveguides in x-cut LiNbO3”, Optica Applicata 19, 423-428, 1989. [8] J. Crank, Mathematics of Diffusion, Charlendon Press, 1975. [9] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate”, Opt. Lett. 22, 1553-1555, 1997. [10] Michael L. Bortz, Quasi-phasematched optical frequency conversion in lithium niobate waveguides, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1992). REFERENCE FOR CHAPTER 3 [1] T. Fujiwara, X. Cao, R. Sricastava, and R. V. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides”, Appl. Phys. Lett. 61, 743-745, 1992. [2] T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc”, Sov. Phys. Solid State 33, 674-680, 1991. [3] I. W. Kim, B. C. Park, B.M. Jin, A.S. Bhalla, and J. W. Kim, “Characteristics of MgO-doped LiNbO3 crystals”, Materials Lett. 24, 157-160, 1995. [4] P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides”, J. Opt. Soc. Am. 60, 1325-1337, 1970. [5] J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis”, Appl. Opt. 15, 151-155, 1976. [6] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate”, Opt. Lett. 22, 1553-1555, 1997. [7] Shen Hy, Xu H, Zeng Zd, Lin Wx, and Wu Rf, Xu Gf, “Measurement of refractive-indexes and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol percent MgO”, Appl. Opt. 31, 6695-6697, 1992. [8] Yu. N. Korkishko, and V. A. Fedorov, “Structure phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties”, IEEE J. Sele. Top. Quantum Electronics 2, 187-196, 1996. [9] Yu. N. Korkishko, V. A. Fedorov, et al, “Relationships between structural and optical properties of proton-exchanged waveguides on z-cut lithium niobate”, Appl. Opt. 35, 7056-7060, 1996. [10] J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, et al, “Hydrogen in lithium niobate”, Adv. in Phys. 45, 349-392, 1996. [11] Y. Kong, J. Xu, W. Zhang, and G. Zhang, “The site occupation of protons in lithium niobate crystals”, J. Phys. and Chem. Solid. 61, 1331-1335, 2000. [12] Yu. N. Korkishko, and V. A. Fedorov, “Relationship between refractive index and hydrogen concentration in proton exchanged LiNbO3 waveguides”, J. Appl. Phys. 82, 1010-1017, 1997. [13] Yu. N. Korkishko, V. A. Fedorov and F. Laurell, ”The SHG-response of different phases in proton exchanged lithium niobate waveguide”, IEEE J. Sele. Top. Quantum Electronics 6, 132-142, 2000. [14] J. Rams, F. Agullo-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients”, Appl. Phys. Lett. 71, 3356-3358, 1997. REFERENCE FOR CHAPTER 4 [1] G. D. Miller, Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA (1998). [2] Ming-Hsien Chou, Optical frequency mixers using three-wave mixing for optical fiber communications, Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999). [3] E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion”, Appl. Phys. 57, 2294-2296, 1990. [4] M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts and D. F. Welch, “Noncritical quasi-phasematched second harmonic generation in an annealed proton exchanged LiNbO3 waveguides”, Trans. on Quantum Electron. 30, 2953, 1994. [5] Michael L. Bortz, Quasi-phasematched optical frequency conversion in lithium niobate waveguides, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1992).
|