|
1. OBRIEN S; MEHUYS D et al., “HIGH-POWER DIFFRACTION-LIMITED MONOLITHIC BROAD AREA MASTER OSCILLATOR POWER-AMPLIFIER”, IEEE PHOTONICS TECHNOLOGY LETTERS, 5, (5), 526-528 (1993) 2. PARKE R; WELCH DF et al., “2.0 W CW, DIFFRACTION-LIMITED OPERATION OF A MONOLITHICALLY INTEGRATED MASTER OSCILLATOR POWER-AMPLIFIER”, IEEE PHOTONICS TECHNOLOGY LETTERS, 5, (3), 297-300 (1993) 3. WELCH DF; PARKE R et al., “ 1.1 W CW, DIFFRACTION-LIMITED OPERATION OF A MONOLITHICALLY INTEGRATED FLARED-AMPLIFIER MASTER OSCILLATOR POWER-AMPLIFIER”, ELECTRONICS LETTERS, 28, (21), 2011-2013 (1992) 4. J. A. Armstrong, N. Bloembergen et al., Phys. Rev. 127, 1918 (1962) 5. D. A. Kleiman, Phys. Rev. 126, 1977 (1962); J. A. Giordmaine, Phys. Rev. Lett. 8, 19 (1962); P. D. Miller, R. W. Terhune et al., Phys. Rev. Lett. 8, 21 (1962) 6. D. Feng et al., Appl. Phys. Lett. 37, 607 (1980) 7. Afeisst and P. Koidl, Appl. Phys. Lett. 47, 1125 (1985) 8. M. M. Fejer et al., “Quasi-phase-matched second harmonic generation: turning and tolerances,” IEEE J. Quantum Electron. 28 (11), 2631-54 (1992) 9. P. W. Haycock and P.D. Townsend, Appl. Phys. Lett. 48, 698 (1986) 10. K. Daneshvar et al., “A Novel method for laser-induced periodic domain reversal in LiNbO3,” IEEE J. Quantum Electron. 36 (1), 85-8 (2000) 11. K. Nakamura et al., Proc. 1986 Ultrasonics Symposium, 719-722 12. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl. Phys. Lett. 66 (22), 2943-5 (1995) 13. H. Ito, el al., Electron. Lett. 27, 1211 (1991) 14. M. Yamada et al., ”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62 (5), 435-6 (1993) 15. L. E. Myer, Ph.D. dissertation, Stanford university, 1995 16. G. D. Miller, Ph.D. dissertation, Stanford university, 1998; G. D. Miller et al., ”Visible quasi-phasematched harmonic generation by electric- field-poled lithium niobate,” SPIE 2700, 34-45 (1997) 17. V. Ya. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium niobate,” Physics of the Solid State 41 (10), 1681-7 (1999) 18. R. G. Batchko et al., “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Optics Letters 24 (18), 1293-5 (1999) 19. R. G. Batchko et al., ”Backswitch poling in lithium niobate for high- fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75 (12), 1673-5 (1999) 20. V. Ya. Shur et al., ”Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76 (2), 143-5 (2000) 21. R. G. Batchko et al., ”Limitations of high-power visible wavelength periodically poled lithium niobate device due to green-induced infrared absorption and thermal lensing,” CLEO’98 p.75-6 (1998) 22. Yasunori Furukawa et al., ”Stoichiometric Mg: LiNbO3 as an effective material for nonlinear optics,” Optics Letters 23 (24), 1892-4 (1998) 23. Masaki Asobe et al., ”Reducing photorefractive effect in periodically poled ZnO- and MgO- doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78 (21), 3163-5 (2001) 24. Y. Furukawa et al., ”Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78 (14), 1970-2 (2001) 25. Y. Furukawa et al., ”Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentractions,” Appl. Phys. Lett. 77 (16), 2494-6 (2000) 26. J. Rams et al., ”Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Optics Communications 178, 211-6 (2000) 27. S. Kurimura et al., ”Domain inversion by an electron-beam-induced-electricfield in MgO:LiNbO3 , LiNbO3 LiTaO3,” Jpn. J. Appl. Phys. 35 , L31-3 (1996) 28. Atsuko Kuroda et al., ”Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields ,” Appl. Phys. Lett. 69 (11), 1565-7 (1996) 29. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl. Phys. Lett. 69 (18), 2629-31 (1996) 30. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999) 31. S. Kim et al., ”Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949-63 (2001) 32. L. Huang et al., ”Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Appl. Phys. B 72, 301-6 (2001) 33. G. D. boyd et al., ”Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597-9 (1968) 34. R. C. Miller et al., ”Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5 (1), 17-9 (1964) 35. V. Gopalan, N. A. Stanford, J. A. Aust, K. Kitamura, and Y. Furukawa, in Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 4 Ferroelectric and Dielectrics, edited by H. S. Nalwa (Academic, New York, 2000), p. 57-114 36. D. Xue et al., “Induced Li-site vacancies and non-linear optical behavior of doped lithium niobate crystals,”Optical Materials 16, 381-7 (2001) 37. V. Gopalan et al., ”Origin of internal field and visualization of 180o domain in congruent LiTaO3 crystals,” J. Appl. Phys. 88 (11), 6665-8 (2000) 38. V. Gopalan et al., “Wall velocities, switching times, and the stabilization mechanism of 180o domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83 (2), 941-54 (1998) 39. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996) 40. V. Gopalan et al., ”Switching kinetics of 180o domain in congruent LiNbO3 and LiTaO3 crystals,” Solid State Communications109, 111-7 (1999) 41. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999) 42. L. E. Myer, Ph.D. dissertation, Stanford university, 1995 43. D. Viehland et al., ”Random-field model for ferroelectric domain dynamics and polarization reversal,” J. Appl. Phys. 88 (11), 6696-707 (2000) 44. M. Molotskii et al., ”Fluctuon effects in ferroelectric polarization switching,” J. Appl. Phys. 88 (9), 5318-27 (2000) 45. S. Ducharme et al., ”Intrinsic ferroelectric coercive field,” Phys. Rev. Lett. 84 (1), 175-8 (2000) 46. W. F. Li et al., ”A theory of ferroelectric hysteresis with a superimposed stress,” J. Appl. Phys. 91 (6), 3806-15 (2002) 47. T. J. Yang et al., ”Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82 (20), 4106-9 (1999) 48. M. Yamada et al., ”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62 (5), 435-6 (1993) 49. G. D. Miller, Ph.D. dissertation, Stanford university, 199850. G. D. Miller et al., ”Visible quasi-phasematched harmonic generation by electric- field-poled lithium niobate,” SPIE 2700, 34-45 (1997) 51. V. Gopalan et al., “Wall velocities, switching times, and the stabilization mechanism of 180o domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83 (2), 941-54 (1998) 52. R. R. Mehta et al., “Depolatization fields in thin ferroelectric films” J. Appl. Phys. 44 (8) 3379-85 (1973) 53. V. Ya. Shur et al., “Dynamics of plane domain walls in lead germanate and gadolinium molybdate,” Ferroelectrics 111, 197-206 (1990) 54. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996) 55. Jung Hoon Ro et al., “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77 (15), 2391-3 (2000) 56. V. D. Kugel et al., ”Anomalous electron emission from LiNbO3 crystals,” Appl. Phys. Lett. 68 (20), 2813-5 (1996) 57. M. Houé et al., ”Thermal polarization reversal of lithium niobate,” Appl. Phys. Lett. 66 (20), 2667-9 (1995) 58. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl. Phys. Lett. 66 (22), 2943-5 (1995) 59. S. Chao et al., “Large photoinduced ferroelectric coercive field increase and photodefined domain pattern in lithium-tantalite crystal,” Appl. Phys. Lett. 69 (25), 3803-5 (1996) 60. Hiroshi Miyajima, “High-Aspect-Ratio Photolithography for MEMS Applications,” Journal of Microelectromechanical Systems, 4, (4), 220 (1995) 61. V. Ya. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium niobate,” Physics of the Solid State 41 (10), 1681-7 (1999) 62. R. G. Batchko et al., “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Optics Letters 24 (18), 1293-5 (1999) 63. R. G. Batchko et al., ”Backswitch poling in lithium niobate for high- fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75 (12), 1673-5 (1999) 64. V. Ya. Shur et al., ”Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett. 76 (2), 143-5 (2000) 65. L. E, Myers et al., Opt. Lett. 20,52-54 (1995) 66. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996) 67. Yasuo Cho et al., ”Scanning- nonlinear-dielectric-microscopy study on periodically poled LiNbO3 for a high-performance quasi-phase matching device,” Appl. Phys. Lett. 79 (18), 143-5 (2001) 68. Sungwon Kim et al., ”Direct x-ray synchrotron imaging of strains at 180o dimain walls in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77 (13), 2955-2957 (2000) 69. T.J. Yang et al., ”Near field scanning optical microscopy of ferroelectric domain walls,” Appl. Phys. Lett. 71 (14), 1960-1962 (1997) 70. Sergey I. et al., ”Second-harmonic imaging of ferroelectric domain wals,” Appl. Phys. Lett. 73 (13), 1814-1816 (1998) 71. V. Gopalan et al., “The role of nonstoichiometry in 180o domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72 (16), 1981-3 (1998) 72. V. Y. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium niobate,” Physics of the Solid State, 41, (10), 1681 — 1687 (1999) 73. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl. Phys. Lett. 69 (18), 2629-31 (1996) 74. U.S. Patent No. 6,156,255 75. U.S. Patent No. 5,193,023 76. U.S. Patent No. 5,519,802 77. U.S. Patent No. 5,991,065 78. U.S. Patent No. 5,986,798 79. U.S. Patent No. 5,875,053 80. U.S. Patent No. 5,838,702 81. U.S. Patent No. 5,786,926 82. U.S. Patent No. 5,756,263 83. U.S. Patent No. 5,654,229 84. U.S. Patent No. 5,652,674 85. U.S. Patent No. 5,615,041 86. J. P. Meyn et al., “Tunable ultraviolet radiation by second- harmonic generation in periodically poled lithium tantalite,” Optics Letters, 22, (16), 1214 — 1216 (1997) 87. G. D. Miller et al., “Visible quasi-phasematched harmonic generation by electric- field-poled lithium niobate,” SPIE, 2700, 34 (1997) 88. J. Rams et al., “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Optics Communications 178, 211-216 (2000) 89. R. G. Batchko et al., ”Limitations of high-power visible wavelength periodically poled lithium niobate device due to green-induced infrared absorption and thermal lensing,” CLEO’98 p.75-6 (1998) 90. G. D. Miller, Ph.D. dissertation, Stanford university, 1998 91. G. D. Miller et al., ”Visible quasi-phasematched harmonic generation by electric- field-poled lithium niobate,” SPIE 2700, 34-45 (1997) 92. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled MgO:LiNbO3,” Electronics Letters, 32, 2091-2092 (1996) 93. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999) 94. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl. Phys. Lett. 69 (18), 2629-31 (1996) 95. B. Zhou et al., “Efficient 1.5mm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. 40, L796-98 (2001) 96. Koichiro Nakamura et al., ”Periodic poling of magnesium-oxide-doped lithium niobate,” Journal of Applied Physics 91, 4528-4534 (2002)
|