跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子加
研究生(外文):Tze Chia Lin
論文名稱:先進週期電場極化反轉技術:理論、製程與非線性光學效率分析;以鈮酸鋰與氧化鎂離子摻雜鈮酸鋰為例之探討
論文名稱(外文):Anvance Electrical Poling Technology: Modeling, Fabrication, and Nonlinear Optical Performance, using CLN and MgO:CLN crystals as an example
指導教授:黃衍介黃衍介引用關係
指導教授(外文):Yen-Chieh Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:97
中文關鍵詞:鈮酸鋰氧化鎂離子摻雜鈮酸鋰極化反轉
外文關鍵詞:PolingCLNMgO:CLNLithium NiobateMgO doped Lithium Niobate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文主要研究週期電場極化反轉之鈮酸鋰與摻雜鎂離子鈮酸鋰之製作。其中包含理論分析、模擬與最佳化參數。藉由我們建立的理論分析與最佳化參數的步驟,我們成功製作週期在4m以上,0.5mm厚的週期電場極化反轉之鈮酸鋰晶片,光學測量顯示4m週期電場極化反轉之鈮酸鋰晶片的轉換效率達2.4%/W/cm,6.5m週期電場極化反轉之鈮酸鋰晶片的轉換效率達1.8∼2%/W/cm。我們也成功製作了0.5mm厚週期大於18m的週期電場極化反轉之鈮酸鋰晶片。對,另外摻雜鎂離子鈮酸鋰之製作,也成功到達週期大於10m的晶片製作。我們也研發出數種新穎的電極結構以進一步改善所製作之週期電場極化反轉之鈮酸鋰晶與摻雜鎂離子鈮酸鋰晶片的品質與非線性頻率轉換效率。其中包括交錯梳子結構已降低在週期電場極化反轉時電場的交互干涉影響;分段式電極結構以最佳化單一次週期電場極化反轉時的面積條件。為了更進一步的再改善週期電場極化反轉時的成核作用,我們也設計了幾種多角電極結構,已增進週期電場極化反轉時的成核密度。另外,我們也改善週期電場極化反轉時所使用的設備夾具,由原先傳統的液態式電極夾具,進展為由電腦控制的固態電極平台,並加裝溫度控制設備,使得在週期電場極化反轉時的控制條件更加穩定,並且有助於週期電場極化反轉摻雜鎂離子鈮酸鋰的製作。
This work concentrates on developing PP-something devices with high fidelity domain controllability for use in the commercial and academic applications that use QPM technology. This study also attempts to provide further insight into the kinetics of domain formation to elucidate a universal model for the fabrication of PPCLN, PP-MgO:CLN, and other advanced materials such as MgO:SLN, SLT, and MgO:SLT among others. The model descried in Chapter 2 is a general discussion of domain evolution kinetics, dominated factors for domain quality and the optimization method for electric field poling of ferroelectric crystals. The characterizing steps and method of optimize each dominated factors in Chapter 5 provide an example for developing poling process of new materials. We provide a general guide for characterizing and fabrication of advance crystals. This includes nucleation optimization, optimization of poling field through compromise among sensitivity of wall velocity to applied field, nucleation rate and switching time. The characteristic of different crystal can be included in the pool of utilizable factors, thus the temperature dependence of conductivity, switching time and
wall velocity; dependence of coercive field and wall velocity on the defect structure. Few advance techniques have been introduced in order to help in pushing down to shorter grating periods, this includes interlace-comb structure, sectional structure and chemical patterning. A compact, liquid electrolyte free and computer controlled poling station were introduced. Through this setup, it is possible to alter the crystal property during poling process, precise control of domain duty cycle, shorten the processing time of lithography patterning (if vacuum is used as insulator instead of
photoresist) and increase wafer utilization. From this research, we successfully fabricated high fidelity,
0.5mm-thick PPCLN with grating periods above 4mm in a reasonable length (e.g. 5cm). The measured conversion efficiencies of 4mm-period and 6.5mm-period PPCLN are 2.4%/W/cm and 1.8~2%/W/cm respectively. A recipe for fabricating 1mm-thick PPCLN was introduced. The available grating periods is above 18mm. Through the optimization process of PPMgO:CLN we obtained a nucleation density of
0.2~1.2 nuclei per micron. From our knowledge it is the first time that an exponential relationship between switching time/current and temperature have been measured, which is similar to the exponential relationship between switching time/current and applied field presented in other articles.
Through this research we successfully fabricated high fidelity, 0.5mm-thick PPMgO:CLN with grating periods above 10mm in a reasonable length.
Abstract
摘要
致謝
Table of content
List of Figures
List of Tables
CHAPTER1.Introduction 1
1.1 Motivation─ need for full-color laser source
1.2 Strategy for developing materials
1.3 Quasi-phase matched second harmonic generation theory
1.3.1 Spatial domain
1.3.2 Fourier transformation
1.3.3 Tuning and tolerance
1.4 Main contribution of this research
1.5 Overview of dissertation
CHAPTER 2. Modeling and characterization of domain inversion process
2.1 Background on domain inversion of ferroelectrics
2.2 Modeling of the electric field poling
2.2.0 Prior work on electric field periodically poled lithium niobate
2.2.1 Domain kinetics during poling process
2.2.2 Further discussion in domain inversion process
2.3 Optimization and the available control parameters in electric field poling
2.3.0 Voltage waveform optimization
2.3.1 Fabrication process
2.3.2 Pattern issue
2.3.3 Contrast improvement
2.3.4 Switching time and peak switching current
2.3.5 Area dependence
CHAPTER 3. Fabrication of the electric field periodicallypoled congruentlithium niobate
3.1 Lithographic process
3.1.1 Fabricating high- fidelity photoresist pattern
3.1.2 Metal electrode and improved lift-off process
3.2 Patterning and fabricating periodic poled LiNbO3 with period less than 7mm with nonlinear performance testing
3.2.1 6.5mm-period PP-CLN
3.2.2 Second-harmonic generation from 1064nm to 532nm
3.2.3 near 4mm-period PP-CLN
3.3 Fabrication of large-aperture (1mm-thickness) PPCLN
3.3.1 Poling in high field region
3.3.2 Poling in low current region
3.3.3 Poling in low field region with low poling current limitation
CHAPTER 4. Novel patterning structure and poling setup for domain inversion process
4.1 Introduction
4.2 Interlaced comb-like structure
4.3 Sectional structure
4.4 Poling station
CHAPTER 5. Periodical poling of 5mol% MgO-doped congruent lithium niobate crystal
5.1 Introduction
5.2 Switching time
5.3 Nucleation
5.3.1 Nucleation at High Temperature (120oC)
5.3.2 Nucleation at Mid Temperature (80oC)
5.3.3 Nucleation at Room Temperature
5.3.4 -Z NiCr
5.4 Optimization of the poling field
CHAPTER 6. Conclusion
1. OBRIEN S; MEHUYS D et al., “HIGH-POWER DIFFRACTION-LIMITED MONOLITHIC
BROAD AREA MASTER OSCILLATOR POWER-AMPLIFIER”, IEEE PHOTONICS
TECHNOLOGY LETTERS, 5, (5), 526-528 (1993)
2. PARKE R; WELCH DF et al., “2.0 W CW, DIFFRACTION-LIMITED OPERATION OF A
MONOLITHICALLY INTEGRATED MASTER OSCILLATOR POWER-AMPLIFIER”,
IEEE PHOTONICS TECHNOLOGY LETTERS, 5, (3), 297-300 (1993)
3. WELCH DF; PARKE R et al., “ 1.1 W CW, DIFFRACTION-LIMITED OPERATION OF A
MONOLITHICALLY INTEGRATED FLARED-AMPLIFIER MASTER OSCILLATOR
POWER-AMPLIFIER”, ELECTRONICS LETTERS, 28, (21), 2011-2013 (1992)
4. J. A. Armstrong, N. Bloembergen et al., Phys. Rev. 127, 1918 (1962)
5. D. A. Kleiman, Phys. Rev. 126, 1977 (1962); J. A. Giordmaine, Phys. Rev. Lett. 8, 19 (1962); P.
D. Miller, R. W. Terhune et al., Phys. Rev. Lett. 8, 21 (1962)
6. D. Feng et al., Appl. Phys. Lett. 37, 607 (1980)
7. Afeisst and P. Koidl, Appl. Phys. Lett. 47, 1125 (1985)
8. M. M. Fejer et al., “Quasi-phase-matched second harmonic generation: turning and
tolerances,” IEEE J. Quantum Electron. 28 (11), 2631-54 (1992)
9. P. W. Haycock and P.D. Townsend, Appl. Phys. Lett. 48, 698 (1986)
10. K. Daneshvar et al., “A Novel method for laser-induced periodic domain reversal in LiNbO3,”
IEEE J. Quantum Electron. 36 (1), 85-8 (2000)
11. K. Nakamura et al., Proc. 1986 Ultrasonics Symposium, 719-722
12. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl.
Phys. Lett. 66 (22), 2943-5 (1995)
13. H. Ito, el al., Electron. Lett. 27, 1211 (1991)
14. M. Yamada et al., ”First-order quasi-phase matched LiNbO3 waveguide periodically poled by
applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62
(5), 435-6 (1993)
15. L. E. Myer, Ph.D. dissertation, Stanford university, 1995
16. G. D. Miller, Ph.D. dissertation, Stanford university, 1998; G. D. Miller et al., ”Visible
quasi-phasematched harmonic generation by electric- field-poled lithium niobate,” SPIE 2700,
34-45 (1997)
17. V. Ya. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium
niobate,” Physics of the Solid State 41 (10), 1681-7 (1999)
18. R. G. Batchko et al., “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm
by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,”
Optics Letters 24 (18), 1293-5 (1999)
19. R. G. Batchko et al., ”Backswitch poling in lithium niobate for high- fidelity domain patterning
and efficient blue light generation,” Appl. Phys. Lett. 75 (12), 1673-5 (1999)
20. V. Ya. Shur et al., ”Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys.
Lett. 76 (2), 143-5 (2000)
21. R. G. Batchko et al., ”Limitations of high-power visible wavelength periodically poled lithium
niobate device due to green-induced infrared absorption and thermal lensing,” CLEO’98
p.75-6 (1998)
22. Yasunori Furukawa et al., ”Stoichiometric Mg: LiNbO3 as an effective material for nonlinear
optics,” Optics Letters 23 (24), 1892-4 (1998)
23. Masaki Asobe et al., ”Reducing photorefractive effect in periodically poled ZnO- and MgO-
doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78 (21), 3163-5 (2001)
24. Y. Furukawa et al., ”Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys.
Lett. 78 (14), 1970-2 (2001)
25. Y. Furukawa et al., ”Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO
concentractions,” Appl. Phys. Lett. 77 (16), 2494-6 (2000)
26. J. Rams et al., ”Optical damage inhibition and thresholding effects in lithium niobate above
room temperature,” Optics Communications 178, 211-6 (2000)
27. S. Kurimura et al., ”Domain inversion by an electron-beam-induced-electricfield in
MgO:LiNbO3 , LiNbO3 LiTaO3,” Jpn. J. Appl. Phys. 35 , L31-3 (1996)
28. Atsuko Kuroda et al., ”Domain inversion in ferroelectric MgO:LiNbO3 by applying electric
fields ,” Appl. Phys. Lett. 69 (11), 1565-7 (1996)
29. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl.
Phys. Lett. 69 (18), 2629-31 (1996)
30. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric
field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999)
31. S. Kim et al., ”Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949-63 (2001)
32. L. Huang et al., ”Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate
grown by the top-seeded solution method,” Appl. Phys. B 72, 301-6 (2001)
33. G. D. boyd et al., ”Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597-9 (1968)
34. R. C. Miller et al., ”Optical second harmonic generation in piezoelectric crystals,” Appl. Phys.
Lett. 5 (1), 17-9 (1964)
35. V. Gopalan, N. A. Stanford, J. A. Aust, K. Kitamura, and Y. Furukawa, in Handbook of
Advanced Electronic and Photonic Materials and Devices, vol. 4 Ferroelectric and Dielectrics,
edited by H. S. Nalwa (Academic, New York, 2000), p. 57-114
36. D. Xue et al., “Induced Li-site vacancies and non-linear optical behavior of doped lithium
niobate crystals,”Optical Materials 16, 381-7 (2001)
37. V. Gopalan et al., ”Origin of internal field and visualization of 180o domain in congruent
LiTaO3 crystals,” J. Appl. Phys. 88 (11), 6665-8 (2000)
38. V. Gopalan et al., “Wall velocities, switching times, and the stabilization mechanism of 180o
domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83 (2), 941-54 (1998)
39. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and
time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996)
40. V. Gopalan et al., ”Switching kinetics of 180o domain in congruent LiNbO3 and LiTaO3
crystals,” Solid State Communications109, 111-7 (1999)
41. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric
field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999)
42. L. E. Myer, Ph.D. dissertation, Stanford university, 1995
43. D. Viehland et al., ”Random-field model for ferroelectric domain dynamics and polarization
reversal,” J. Appl. Phys. 88 (11), 6696-707 (2000)
44. M. Molotskii et al., ”Fluctuon effects in ferroelectric polarization switching,” J. Appl. Phys. 88
(9), 5318-27 (2000)
45. S. Ducharme et al., ”Intrinsic ferroelectric coercive field,” Phys. Rev. Lett. 84 (1), 175-8
(2000)
46. W. F. Li et al., ”A theory of ferroelectric hysteresis with a superimposed stress,” J. Appl. Phys.
91 (6), 3806-15 (2002)
47. T. J. Yang et al., ”Direct observation of pinning and bowing of a single ferroelectric domain
wall,” Phys. Rev. Lett. 82 (20), 4106-9 (1999)
48. M. Yamada et al., ”First-order quasi-phase matched LiNbO3 waveguide periodically poled by
applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62
(5), 435-6 (1993)
49. G. D. Miller, Ph.D. dissertation, Stanford university, 199850. G. D. Miller et al., ”Visible quasi-phasematched harmonic generation by electric- field-poled
lithium niobate,” SPIE 2700, 34-45 (1997)
51. V. Gopalan et al., “Wall velocities, switching times, and the stabilization mechanism of 180o
domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83 (2), 941-54 (1998)
52. R. R. Mehta et al., “Depolatization fields in thin ferroelectric films” J. Appl. Phys. 44 (8)
3379-85 (1973)
53. V. Ya. Shur et al., “Dynamics of plane domain walls in lead germanate and gadolinium
molybdate,” Ferroelectrics 111, 197-206 (1990)
54. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and
time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996)
55. Jung Hoon Ro et al., “Subsecond relaxation of internal field after polarization reversal in
congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77 (15), 2391-3 (2000)
56. V. D. Kugel et al., ”Anomalous electron emission from LiNbO3 crystals,” Appl. Phys. Lett. 68
(20), 2813-5 (1996)
57. M. Houé et al., ”Thermal polarization reversal of lithium niobate,” Appl. Phys. Lett. 66 (20),
2667-9 (1995)
58. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl.
Phys. Lett. 66 (22), 2943-5 (1995)
59. S. Chao et al., “Large photoinduced ferroelectric coercive field increase and photodefined
domain pattern in lithium-tantalite crystal,” Appl. Phys. Lett. 69 (25), 3803-5 (1996)
60. Hiroshi Miyajima, “High-Aspect-Ratio Photolithography for MEMS Applications,” Journal of
Microelectromechanical Systems, 4, (4), 220 (1995)
61. V. Ya. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium
niobate,” Physics of the Solid State 41 (10), 1681-7 (1999)
62. R. G. Batchko et al., “Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm
by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,”
Optics Letters 24 (18), 1293-5 (1999)
63. R. G. Batchko et al., ”Backswitch poling in lithium niobate for high- fidelity domain patterning
and efficient blue light generation,” Appl. Phys. Lett. 75 (12), 1673-5 (1999)
64. V. Ya. Shur et al., ”Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys.
Lett. 76 (2), 143-5 (2000)
65. L. E, Myers et al., Opt. Lett. 20,52-54 (1995)
66. V. Gopalan et al., “Observation of internal field in LiTaO3 single crystals: Its origin and
time-temperature dependence,” Appl. Phys. Lett. 68 (7), 888-90 (1996)
67. Yasuo Cho et al., ”Scanning- nonlinear-dielectric-microscopy study on periodically poled
LiNbO3 for a high-performance quasi-phase matching device,” Appl. Phys. Lett. 79 (18),
143-5 (2001)
68. Sungwon Kim et al., ”Direct x-ray synchrotron imaging of strains at 180o dimain walls in
congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77 (13), 2955-2957 (2000)
69. T.J. Yang et al., ”Near field scanning optical microscopy of ferroelectric domain walls,” Appl.
Phys. Lett. 71 (14), 1960-1962 (1997)
70. Sergey I. et al., ”Second-harmonic imaging of ferroelectric domain wals,” Appl. Phys. Lett. 73
(13), 1814-1816 (1998)
71. V. Gopalan et al., “The role of nonstoichiometry in 180o domain switching of LiNbO3
crystals,” Appl. Phys. Lett. 72 (16), 1981-3 (1998)
72. V. Y. Shur et al., “Domain kinetics in the formation of a periodic domain structure in lithium
niobate,” Physics of the Solid State, 41, (10), 1681 — 1687 (1999)
73. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl.
Phys. Lett. 69 (18), 2629-31 (1996)
74. U.S. Patent No. 6,156,255
75. U.S. Patent No. 5,193,023
76. U.S. Patent No. 5,519,802
77. U.S. Patent No. 5,991,065
78. U.S. Patent No. 5,986,798
79. U.S. Patent No. 5,875,053
80. U.S. Patent No. 5,838,702
81. U.S. Patent No. 5,786,926
82. U.S. Patent No. 5,756,263
83. U.S. Patent No. 5,654,229
84. U.S. Patent No. 5,652,674
85. U.S. Patent No. 5,615,041
86. J. P. Meyn et al., “Tunable ultraviolet radiation by second- harmonic generation in periodically
poled lithium tantalite,” Optics Letters, 22, (16), 1214 — 1216 (1997)
87. G. D. Miller et al., “Visible quasi-phasematched harmonic generation by electric- field-poled
lithium niobate,” SPIE, 2700, 34 (1997)
88. J. Rams et al., “Optical damage inhibition and thresholding effects in lithium niobate above
room temperature,” Optics Communications 178, 211-216 (2000)
89. R. G. Batchko et al., ”Limitations of high-power visible wavelength periodically poled lithium
niobate device due to green-induced infrared absorption and thermal lensing,” CLEO’98
p.75-6 (1998)
90. G. D. Miller, Ph.D. dissertation, Stanford university, 1998
91. G. D. Miller et al., ”Visible quasi-phasematched harmonic generation by electric- field-poled
lithium niobate,” SPIE 2700, 34-45 (1997)
92. K. Mizuuchi et al., “Harmonic blue light generation in bulk periodically poled MgO:LiNbO3,”
Electronics Letters, 32, 2091-2092 (1996)
93. Masaru Nakamura et al., “Bulk periodically poled MgO-doped LiNbO3 by external electric
field application,” Jpn. Appl. Phys. Lett. 38 , L512-4 (1999)
94. A. Harada et al., “Bulk periodically poled MgO-LiNbO3 by corona discharge method,” Appl.
Phys. Lett. 69 (18), 2629-31 (1996)
95. B. Zhou et al., “Efficient 1.5mm-band MgO-doped LiNbO3 quasi-phase-matched wavelength
converters,” Jpn. J. Appl. Phys. 40, L796-98 (2001)
96. Koichiro Nakamura et al., ”Periodic poling of magnesium-oxide-doped lithium niobate,”
Journal of Applied Physics 91, 4528-4534 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李玉嬋(民85)。校園暴力問題防治計劃。諮商與輔導,129期,6-12頁。
2. 李坤崇(民79)。滿足需求、提高動機--從需求層次論談起。國教之友,41卷(4),42-44頁。
3. 李素馨(民89)。都市住宅社區形式與居民被害恐懼感關係之研究。都市與計劃,27卷(1),25-45頁。
4. 李慧馨(民87)。框架害怕犯罪。藝術學報,63期,175-196頁。
5. 周愫嫻、侯崇文(民89)。青少年被害影響因素的探討。犯罪學期刊,5期,79-106頁。
6. 林淑玲(民81)。幼兒恐懼之處理。教師之友,33卷(1),15-19頁。
7. 林燦璋、黃家琦(民88)。台灣犯罪測量、犯罪黑數、治安安全感與社會治安指標之關係。中央警察大學學報,35期,237-268頁。
8. 邱瓊慧(民77)。對國中生休閒和動應有的認識。諮商與輔導,30期,21-24。
9. 高迪理(民80)。社會支持體系概念之架構之探討。社區發展季刊,54期,24-31頁。
10. 許國賢(民89)。恐懼感與政治。人文及社會科學集刊,12卷(1),79-101頁。
11. 陳玉書(民89)。女性犯罪之現況與研究發展。中央警察大學學報,36期,255-276頁。
12. 陳麗欣(民84a)。從被害者觀點探討校園暴行被害經驗、加害行為、與被害恐懼感之關係—以國中學生鬥毆現象為例分析之。犯罪學期刊,1期,77-112頁。
13. 陳麗欣(民84b)。從被害者觀點探討國中校園勒索暴行暨其被害恐懼感。教育與心理研究,18期,249-286頁。
14. 黃翠紋(民87)。兒童性虐待事件對於受虐者之影響及其防治措施之探討。警學叢刊,29卷(3),195-216頁。
15. 鄭孟忠(民90)。如何教導學童做好EQ管理。社教資料雜誌,277期,7-10頁。