跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳國祥
研究生(外文):Kuo Hsiuang Chen
論文名稱:高效率波長轉換及振幅調變在回火式質子交換PPLN光波導上之研究
論文名稱(外文):Double-pass Annealed-protom-exchanged PPLN Waveguide for High-efficiency Wavelength Conversion and Amplitude Modulation
指導教授:黃衍介黃衍介引用關係
指導教授(外文):Yen-Chieh Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
中文關鍵詞:週期性極化反轉鈮酸鋰回火式液態質子交換法光波導振幅調變
外文關鍵詞:PPLNAPE waveguideAmplitude modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文簡單的介紹利用回火式液態質子交換法製作的週期性極化反轉鈮酸鋰光波導。並討論在雙重路徑的結構下,其單位強度單位長度平方的轉換效率的增強情形。本論文使用的週期性極化反轉鈮酸鋰光波導包含一段40毫米長的準相位匹配結構,在單重路徑的結構、幫浦光強度為20毫瓦的情形下,單位強度單位長度平方的轉換效率為 23.6 % W-1 cm-2,轉換效率為3.77 %。而在雙重路徑的結構下,同樣的元件表現出 75.7 % W-1 cm-2的單位強度單位長度平方的轉換效率,16.86 %的轉換效率。雙重路徑的轉換效率的理論逼近值為13.85 %。
同樣的元件也被當成電光調變器來使用,其電光特性包含半波電壓、調變深度已被測試出來。量測到的半波電壓約為 315伏特,在不同轉換等級下可量到不同的調變深度,分別為 48% 及 60%。
本論文簡單的介紹利用液態質子交換法製作的週期性極化反轉鈮酸鋰光波導。並討論在雙重路徑的結構下,其單位強度單位長度平方的轉換效率的增強情形。本論文使用的週期性極化反轉鈮酸鋰光波導包含一段40毫米長的準相位匹配結構,在單重路徑的結構、幫浦光強度為20毫瓦的情形下,單位強度單位長度平方的轉換效率為 23.6 % W-1 cm-2,轉換效率為3.77 %。而在雙重路徑的結構下,同樣的元件表現出 75.7 % W-1 cm-2的單位強度單位長度平方的轉換效率,16.86 %的轉換效率。雙重路徑的轉換效率的理論逼近值為13.85 %。
同樣的元件也被當成電光調變器來使用,其電光特性包含半波電壓、調變深度已被測試出來。量測到的半波電壓約為 315伏特,在不同轉換等級下可量到不同的調變深度,分別為 48% 及 60%。

This thesis has briefly presented the remarkable work on demonstrating the novel highly efficient double-pass PPLN waveguide Enhancement of the normalized efficiency is verified when compared to the usual single-pass waveguide device. The APE PPLN waveguide with a 40 mm-long QPM section exhibits normalized efficiency of around 23.6 % W-1 cm-2 and the conversion efficiency is about 3.77 % for the single-pass generation with pumping power of 20 mW. The double-pass configuration allows the same device to achieve normalized efficiency of approximately 75.7 % W-1 cm-2 and conversion efficiency of approximately 16.86 %. The conversion efficiency for the double-pass generation can be estimated as 13.85 % using a theoretical approach.
The device is also used as an electro-optic (EO) modulator and its electro-optic effects, half-wave voltage and modulation depth are tested. The measured half-wave voltage of the device is about 315 V, and the obtained modulation depths are around 48 % and 60 %, respectively, under different conversion levels.

Table OF CONTENT
Abstract…………………………………………………………………………….…I
摘要………………………………………………………………………………...…II
Content…………………………………………………………………………...….III
List of Figures…………………………………………………………………...….. V
List of Tables……………………………………………………………………...…VI
Chapter 1. Introduction………...……………………………...…… 1
1.1 Motivation……………………………….…………………..…………………1
1.2 Nonlinear optics.……………………………………....………...……………..1
1.3 Overview of this dissertation………………………………………….....……3
Chapter 2. Theory of Guided-Wave Quasi-Phasematched Second Order Nonlinear Optics and Amplitude Modulation with Phase Compensation……………………………....5
2.1 Introduction……………………………………………………………………5
2.2 Guided-Wave Second Order Nonlinear Optics…………………………...…5
2.3 Discussion of Pump-Depletion and Non-Pump-Depletion in Guided-Wave QPM SHG…………..……………………………………………………..…...9
2.3.1 Solution of coupled-mode equation under non-pump-depletion approximation…………………………………………………………...... 10
2.3.2 General solution of the coupled-mode equation……………..……...……..11
2.4 Amplitude Modulation with Phase Compensation Based On Nonlinear Dispersion………………………………………………………………..…….14
2.5 Summary…………………………………………………………………....…17
Chapter 3. Design, Fabrication, and Testing of the Double-Pass Annealed Proton Exchange (APE) PPLN Waveguide….19
3.1 Introduction………………………………………………………………….. 19
3.2 Tutorials of high efficiency annealed proton exchange (APE) PPLN waveguide……………………………………………………………………19
3.3 Device fabrication…………………………………………………………….22
3.3.1 Fabrication of the APE PPLN waveguide………………………………....22
3.3.2 Fabrication of the nonlinear dispersion modulator………………………..24
3.4 Experimental result……………………………………………………..…….27
3.4.1 Single-pass configuration……………………………………..………........28
3.4.2 Double-pass configuration…………………………….…………………..30
3.4.3 Amplitude modulation based on the double-pass configuration……….….32
3.5 Discussion……………………………………………………………………..35
Chapter 4. Conclusion…………………………………………………40
4.1 Conclusion…………………………………………….……………………….40
4.2 Future direction……………………………………………………………….40
4.2.1 Practical high efficient APE PPLN waveguide………………………...….40
4.2.2 Practical amplitude modulator………………….…………………………42
List of Figures
Fig. 1-1. Wave vector of the QPM second harmonic generation…………………...…2
Fig. 1-2. The tuning curve of the QPM second harmonic generation in the high gain configuration……………………...………………………………………...2
Fig. 2-1. Typical solution of the elliptic integral function………………………..…..13
Fig. 2-2. Growth of the normalized second harmonic amplitude…………..…….…...14
Fig. 2-3. Schematic description of the nonlinear depresive amplitude modulator…...14
Fig. 2-4. Theoretical calculation of the tuning curve for different dispersion section length………………….………………………………..………………….16
Fig. 3-1. Calculated depth profiles of interacting TM00 and TM01 modes at 1560 and 780 nm………………………………………………………………….….21
Fig. 3-2. Schematic description of APE process……………………………………...22
Fig. 3-3. Graphically representation of the concentration dependent function for a = 0.09 and b =12…………………………………………………………......24
Fig. 3-4. Configuration of the device………………………………………………...24
Fig. 3-5. Reduction of the loss of a Ni-Cr —electrode waveguide via a SiO2 buffer layer……………………………………………………………….……….25
Fig. 3-6. The shift of the phase matching wavelength due to an unexpected annealing process……………………………………………………………….….…26
Fig. 3-7. Transversal modulator……………………………………………………... 26
Fig. 3-8. Photograph of the actual device……………………………….…………....27
Fig. 3-9. Schematic description of the butt-coupling………………………...…… ….28
Fig. 3-10. Experimental setup for single-pass configuration…………………….….. 29
Fig. 3-11. Measured low-power CW SHG tuning curve……………………………..30
Fig. 3-12. Schematic description of the micro mirror………………………………..30
Fig. 3-13. Experimental setup for double-pass configuration………………………..31
Fig. 3-14. Comparison of conversion efficiency versus pumping power between
the single-pass and double-pass generation………………………………..32
Fig. 3-15. Experimental setup for measuring of half-wave voltage…………….…. …33
Fig. 3-16. Relationship between the SHG power and the applied voltage………….. 33
Fig. 3-17. Experimental setup for the amplitude modulation……………………..… 34
Fig. 3-18. Experimental result for the SHG amplitude modulation……………….…35
Fig. 3-19. Dual-band AR coating at 775 nm and 1550 nm…………………………..36
Fig. 4-1. Compact and practical double-pass APE PPLN waveguide with the directional coupler and the fiber pigtail……………………………….…..41
Fig. 4-2. Design of the directional coupler…………………………………………..41
Fig. 4-3. The description of the raised-sine function………………………………...42
List of Tables
Table. 3-1. Dependence between displacement ratio and crystalline phase………….20
Table. 3-2. Specification of the primary equipment………………………………….29

1. G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, 1997.
2. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stulz, H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8, 870 (1996).
3. H. Kuwatsuka, H. Shoji, M. Matsuda, H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long cavity spl lambda4 shifted DFB laser,” Electron. Lett. 31, 2108 (1995).
4. L. E. Myers, “Quasi-phasematched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA (1995).
5. M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1994).
6. R. W. Boyd, Nonlinear Optics, Academic Press, 1992.
7. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631 (1992).
8. R. C. Eckardt, J. F. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20, 1178 (1984).
1. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631 (1992).
2. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999).
3. K. W. Chang, A. C. Chiang, T. C. Lin, B. C. Wong, Y. H. Chen, Y. C. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Comm. 203 (1-2), 163 (2002).
4. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D, F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” Trans. on Quantum Electron. 30, 2953 (1994).
5. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA (1998).
6. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918 (1962).
7. R. C. Eckardt, J. F. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20, 1178 (1984).
8. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodicalliy poled lithium niobate waveguide,” Opt. Lett. 27, 43 (2002).
9. K. W. Chang, “多重路徑準相位匹配二階諧頻產生之相位補償與振幅調變,”M.S. Thesis, Department of Electrical Engineering, Tsing Hua University, (2001).
10. A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.
1. D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, D. C. Hanna, “Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source,” Opt. Lett. 23, 162 (1997).
2. K. Mizuuchi, H. Ohta, K. Yamamoto, M. Kato, “Second-harmonic generation with a high-index-clad waveguide,” Opt. Lett. 22, 1217 (1997).
3. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24, 896 (1999).
4. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179 (2002).
5. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodicalliy poled lithium niobate waveguide,” Opt. Lett. 27, 43 (2002).
6. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989.
7. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999).
8. D. Hofmann, G. Shreiber, C. Hasse, H. Herrmann, R. Ricken, W. Sohler, “Mid-infrared difference-frequency generation in periodically poled Ti: LiNbO3 channel waveguides,” Opt. Lett. 24, 896 (1999).
9. M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1994).
10. T. Fujiwara, R. Srivastava, X. Cao, R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346 (1993).
11. Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996).
12. E. J. Lim, S. Matsumoto, M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294 (1990).
13. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D, F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” Trans. on Quantum Electron. 30, 2953 (1994).
14. A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Hater, M. H. Chou, M. M. Fejer, “Amplification in 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731 (1999).
15. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000).
16. H. Nagata, N. Mitsugi, T. Sakamoto, “Undesirable contaminants possibly introduced in LiNbO3 electro-optic devices,” J. Appl. Phys. 86, 6342 (1999).
17. H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti: LiNbO3 optical modulators with sputter deposited SiO2 buffer layer,” J. Appl. Phys. 73, 4162 (1993).
18. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 μm,” IEEE J. Quantum Electron. 18, 1807 (1982).
19. Optical Coating Design Program, Essential Macleod, Thin Film Center Inc.
20. K. W. Chang, A. C. Chiang, T. C. Lin, B. C. Wong, Y. H. Chen, Y. C. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Comm. 203 (1-2), 163 (2002).
1. D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, 1991.
2. H. C. Cheng, R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27, 567 (1991).
3. K. Kissa, “Modeling annealed proton-exchanged directional couplers with nonlinear diffusion theory,” IEEE Photon. Techonl. Lett. 9, 1065 (1993).
4. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999).
5. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top