|
1. G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, 1997. 2. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stulz, H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8, 870 (1996). 3. H. Kuwatsuka, H. Shoji, M. Matsuda, H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long cavity spl lambda4 shifted DFB laser,” Electron. Lett. 31, 2108 (1995). 4. L. E. Myers, “Quasi-phasematched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA (1995). 5. M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1994). 6. R. W. Boyd, Nonlinear Optics, Academic Press, 1992. 7. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631 (1992). 8. R. C. Eckardt, J. F. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20, 1178 (1984). 1. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631 (1992). 2. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999). 3. K. W. Chang, A. C. Chiang, T. C. Lin, B. C. Wong, Y. H. Chen, Y. C. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Comm. 203 (1-2), 163 (2002). 4. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D, F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” Trans. on Quantum Electron. 30, 2953 (1994). 5. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA (1998). 6. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918 (1962). 7. R. C. Eckardt, J. F. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20, 1178 (1984). 8. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodicalliy poled lithium niobate waveguide,” Opt. Lett. 27, 43 (2002). 9. K. W. Chang, “多重路徑準相位匹配二階諧頻產生之相位補償與振幅調變,”M.S. Thesis, Department of Electrical Engineering, Tsing Hua University, (2001). 10. A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984. 1. D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, D. C. Hanna, “Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source,” Opt. Lett. 23, 162 (1997). 2. K. Mizuuchi, H. Ohta, K. Yamamoto, M. Kato, “Second-harmonic generation with a high-index-clad waveguide,” Opt. Lett. 22, 1217 (1997). 3. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24, 896 (1999). 4. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179 (2002). 5. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodicalliy poled lithium niobate waveguide,” Opt. Lett. 27, 43 (2002). 6. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989. 7. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999). 8. D. Hofmann, G. Shreiber, C. Hasse, H. Herrmann, R. Ricken, W. Sohler, “Mid-infrared difference-frequency generation in periodically poled Ti: LiNbO3 channel waveguides,” Opt. Lett. 24, 896 (1999). 9. M. L. Bortz, “Quasi-phasematched optical frequency conversion in lithium niobate waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1994). 10. T. Fujiwara, R. Srivastava, X. Cao, R. V. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346 (1993). 11. Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996). 12. E. J. Lim, S. Matsumoto, M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294 (1990). 13. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D, F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” Trans. on Quantum Electron. 30, 2953 (1994). 14. A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Hater, M. H. Chou, M. M. Fejer, “Amplification in 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731 (1999). 15. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494 (2000). 16. H. Nagata, N. Mitsugi, T. Sakamoto, “Undesirable contaminants possibly introduced in LiNbO3 electro-optic devices,” J. Appl. Phys. 86, 6342 (1999). 17. H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti: LiNbO3 optical modulators with sputter deposited SiO2 buffer layer,” J. Appl. Phys. 73, 4162 (1993). 18. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 μm,” IEEE J. Quantum Electron. 18, 1807 (1982). 19. Optical Coating Design Program, Essential Macleod, Thin Film Center Inc. 20. K. W. Chang, A. C. Chiang, T. C. Lin, B. C. Wong, Y. H. Chen, Y. C. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Comm. 203 (1-2), 163 (2002). 1. D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, 1991. 2. H. C. Cheng, R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27, 567 (1991). 3. K. Kissa, “Modeling annealed proton-exchanged directional couplers with nonlinear diffusion theory,” IEEE Photon. Techonl. Lett. 9, 1065 (1993). 4. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA (1999). 5. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989.
|