跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃義佑
研究生(外文):I-Yu Huang
論文名稱:含積體化微固態參考電極之單晶片高性能酸鹼值感測器
論文名稱(外文):A Monolithic High Performance ISFET pH-Sensor with Integrated Miniaturized Solid-State Reference Electrode
指導教授:黃瑞星黃瑞星引用關係
指導教授(外文):Ruey-Shing Huang
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:98
中文關鍵詞:離子感測場效電晶體微固態式參考電極酸鹼值感測器背接式結構氯化鉀凝膠薄膜
外文關鍵詞:ISFETMiniaturized Solid-State Reference ElectrodepH-SensorBack-Side Contacted StructureKCl-Gel Membrane
相關次數:
  • 被引用被引用:4
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雖然離子感測場效電晶體的觀念已存在超過三十年了,但由其衍生的產品在實際應用層次上仍未多見。此篇論文將針對此一離子感測元件在突破成為商品的過程中所面臨技術上的限制與問題,點出癥結所在並且提出適當的解決方法。離子感測場效電晶體最主要存在三個關鍵的問題,分別是: (1) 必須研發出適當的離子感測薄膜,否則會存在有如高漂移電壓及低酸鹼值感測靈敏度的問題。 (2) 因為離子感測場效電晶體操作時會與液體溶液接觸,所以必須在封裝保護元件的同時允許其離子感應區能裸露出來,在微小化侷限區域內這將不是一件容易的事。 (3) 以離子感測場效電晶體為主的量測系統中通常必須搭配一個參考電極,但傳統的參考電極相對於離子感測場效電晶體晶片都很大,如此一來將限制離子感測場效電晶體與其他信號處理電子電路共一晶片或是應用在体內生物醫學的可能性。以上的問題雖然都曾被個別地研究過,但顯少有人提出過一個全面性的改善方法來同時解決以上3種關鍵問題。在此篇博士論文,我們將提出一個含有積体化微固態參考電極及背接式結構的單晶片酸鹼值感測器,其電化學上的諸多高性能特性亦將被驗証。
首先,我們將比較兩種無機絕緣層(氮化矽與氧化鉭)作為離子感測場效電晶體的離子感應薄膜之感應特性。然後根據他們所個別完成的離子感測場效電晶體在標準酸鹼值溶液中萃取的特性結果,顯示以氧化鉭為離子感應薄膜的離子感測場效電晶體具有較高的酸鹼值線性靈敏度(56-57mV/pH)以及較低的漂移電壓準位。這些結果將與位置--接合理論的預測值十分契合。
其次,為了簡化離子感測場效電晶體在封裝上的困難,我們將提出背接式電子接觸的結構,以使其電子信號得以保護而免受待測溶液的化學侵蝕。這種背接式的結構必須藉由体型矽微加工技術中的"高濃度摻雜矽蝕刻停止層及"雙面對準曝光顯影"等製程技術才得以完成。
最後,為了消除離子感測場效電晶體常須伴隨一分離式參考電極的不便性,我們成功地研發出一種可與離子感測場效電晶體共一晶片使用的全固態型參考電極。此種新型參考電極乃採用一種經瓊脂醣穩定的氯化鉀凝膠薄膜覆蓋在鈦/鈀/銀/氯化銀電極之上,以提供該多層金屬電極一個聚合物支持的固態參考電解質及離子電橋。這種新型的平面積体式參考電極不但沒有填充內部參考電解液於微加工腔体的問題並且擁有許多優良的特性,例如可提供一個非常穩定的參考電位以及完全不受樣品溶液之酸鹼值及氯離子濃度的影響。同時在與商用銀/氯化銀參考電極做校準測試時,我們發現此種新型微小化的參考電極顯示出其胞電位變化量在一小時內只有 ±0.9~1.4mV (相當於 ±0.015~0.023pH); 從酸鹼值4到10的電位變化量低於2mV; 其對氯離子濃度改變具有極高的穩定度 (靈敏度僅有0.02~0.25mV/pKCl)。另外,這種平面全固態式參考電極也顯現出其具有非常低的補偏電壓(只有0.45mV)以及大量製造時達到0.5mV以內的高度再現性。
整体而言,這種具有全固態式參考電極積体化的離子感測場效電晶體酸鹼值感測器,在標準酸鹼值溶液中的特性表現顯示其具有56mV/pH的高線性靈敏度,此結果非常趨近於理論預測值(59mV/pH)。除了以上靜態特性的探討以外,本篇論文也將針對元件的動態響應及滯後現象提出研究與討論。
Although the ion-sensitive field-effect transistor (ISFET) concept has existed for over 30 years, practical applications are still emerging very slowly. In this thesis, we will point out some practical problems that were the limiting factors in the breakthrough of commercialization of ISFET and try to study and provide the appropriate solutions. Three critical issues of ISFET are : (1) The lack of a suitable ion-sensitive membrane as the ISFET gate material with sufficient sensitivity and stability; (2) the encapsulation of the electronics functions from exposure to the sample liquids; and (3) the need of a bulky conventional reference electrode is not compatible to miniaturized chip and not convenient for in-vivo biomedical applications. Although each of the above-mentioned problems has been investigated respectively, very rare researchers have offered a total solution to solve all of those issues at the same time. In this dissertation, a monolithic ISFET hydrogen ion (pH) sensor with an integrated miniaturized solid-state reference electrode and electrical backside contacts structure will be presented and its electrochemical high performance also will be verified.
Firstly, we will compare the sensing characteristics of two inorganic insulators, silicon nitride and tantalum oxide, as the ion-sensitive membranes of pH-ISFET. According to the results of their respectively fabricated pH sensors characterized in standard pH solution, the tantalum oxide (Ta2O5) insulator based ISFET has higher linear pH sensitivity (56-57mV/pH) and lower drift level than silicon nitride (Si3N4) insulator based ISFETs. These results agree very well with the theoretical value of the site-binding theory.
Secondly, backside electrical contacts were constructed to facilitate its protection from chemical attack by the test solutions. These backside electrical contacts were fabricated using silicon bulk micromachining with P+ etching stop and double-side alignment lithography techniques.
Finally, to eliminate the need of a separate reference electrode and facilitate the use of ion-sensitive field-effect transistor (ISFET), an all-solid-state reference electrode integrated with ISFET in one chip has been developed. A novel agarose-stabilized KCl-gel membrane was introduced to serve both as a polymer-supported solid reference electrolyte and an ionic bridge for Ti/Pd/Ag/AgCl electrode. This new planar integrated reference electrode has not only eliminated the fabrication problems associated with the filling of the reference liquid electrolyte into a miniature micromachined cavity, but also has many excellent performance characteristics with respect to the reference potential stability and its insensitivity to the changes of pH values and Cl- ion concentrations in the sample solutions under test. Calibrated against the commercial macro Ag/AgCl reference electrode the new miniaturized reference electrode shows its cell potential variation was ±0.9~1.4mV (equivalent to about ±0.015~0.023pH) in one hour, less than 2mV variation over pH4 to pH10, and almost insensitive to changes in Cl- ion concentration (about 0.02~0.25mV/pKCl). The planar solid-state reference electrode also shows a very small offset voltage of 0.45mV and reproducible to within 0.5mV among the batch fabricated electrodes.
ISFET pH-sensor of SiO2/Ta2O5 gate insulator and through chip backside electrical connections with integrated all-solid-state reference electrode, characterized in standard pH solutions show a linear sensitivity of 56mV/pH, these results agree very well with the theoretical value of 59mV/pH. Dynamic response and hysteresis characteristics of the pH-sensor are also studied and discussed.
CONTENTS
CERTIFICATE OF APPROVAL
ABSTRACT (in Chinese)
ABSTRACT (in English)
ACKNOWLEDGEMENT
CONTENTS
FUGURE CAPTIONS
TABLE CAPTIONS
Chapter 1 Introduction………………………………………………….. (1)
1-1 Silicon-based Ion Sensor :
Ion Sensitive Field Effect Transistor (ISFET)………………….. (1)
1-1-1 Relation between Ion Selective Electrodes (ISEs) and ISFETs…(2)
1-1-2 ISFETs-based Ion Sensing Materials ……………………………(8)
1-2 Solid-State Planar Reference Electrode……………………………….....(13)
1-2-1 ISFET-based Reference Electrode……………………..………...(14)
1-2-2 ISFET-compatible Miniaturized Conventional Reference Electrode…………………………………………………………...(15)
1-3 Outline of the Thesis………………………………………………………(16)
Chapter 2 Theory Description……………………………………….(19)
2-1 Introduction…………………………………………………………… (19)
2-2 The Reference Electrode/Electrolyte Interface……………………….(21)
2-3 The Electrolyte/Insulator Interface……………………………………(26)
Chapter 3 pH-ISFET with Integrated Quasi-Reference Electrode…………………………………………………. (38)
3-1 Problems Associated with ISFETs……………………………………...(38)
3-1-1 The Lack of Ion Sensing Materials with Low Voltage Drift and
High pH Sensitivity………………………………………………(38)
3-1-2 The Need of Miniaturized Planar Reference Electrode…….….(40)
3-1-3 The Encapsulation of Electronics from Exposure to the Sample
Liquid…………………………………………………………….(42)
3-2 Key Micromachining Technologies Development….………………….(43)
3-2-1 Anisotropic Silicon Etch & P+-Si Etch-stop Techniques……....(43)
3-2-2 Lift-off and Chlorination Techniques of Ti/Pd/Ag electrode….(54)
3-3 Chip Design and Fabrication (Process Integration)…………………..(57)
3-3-1 Back-side Contacted pH-ISFETs with Integrated Ti/Pd/Ag/AgCl
Electrode……………………………………….…………………(57)
3-4 Characterization Results and Discussions………………………………(64)
3-4-1 Scanning Electron Microscope (SEM) Inspection of Ti/Pd/Ag/AgCl Electrodes………………………………………………………….(64)
3-4-2 Auger Electron Spectroscopy (AES) Profiling of the Ti/Pd/Ag/AgCl Electrodes………...………………………………………………..(67)
3-4-3 Characteristics of ISFETs with Integrated Reference Electrode.(70)
Chapter 4 Solid State Reference Electrode……………………...(76)
4-1 Ti/Pd/Ag/AgCl/KCl-gel Membrane Reference Electrode……………...(76)
4-2 Offset Potential and Stability of the Reference Electrodes…………….(77)
4-3 Dependence of the Electrode Cell Potential on pH and pCl-…..……….(78)
4-4 Fabrication Reproducibility of the Electrodes…...………………….….(81)
Chapter 5 Conclusion and Recommendations for Further Work.…………………………………………………....(83)
5-1 Conclusion…………………………………………………………….…...(83)
5-2 Recommendations for Future Work..……………………………………(85)
References…………………………………………………………..…………(87)
References
1. S. M. Sze, Semiconductor Sensors, John Wiley & Sons, New York (1994).
2. W. Göpel, J. Hesse and J. N. Zemel, Sensors-A Comprehensive Survey, Vol. 2, Chemical and Biochemical Sensors-part I, VCH Verlagsgesellschaft mbH, Weinheim (1991).
3. M. Lambrechts and W. Sansen, Biosensors : Microelectrochemical Device, IOP (Institute of Physics) Publishing Ltd, New York (1990).
4. J. Janata, Principles of Chemical Sensors, Plenum Press, New York and London (1990).
5. W. H. Ko, Implantable Sensors for Closed-loop Prosthetic Systems, Futura Publishing Company Inc., New York (1985).
6. A. J. Cunningham, Introduction to Bioanalytical Sensors, John Wiley & Sons, New York (1998).
7. R. P. Buck, Electrochemistry of ion-selective electrodes, Sensors and Actuators, 1, (1981) pp.197-260.
8. P. Bergveld, Development of an ion-sensitive solid state device for neurophysiological measurements, IEEE Trans. Biomed. Eng., BME-17 (1970), pp. 70-71.
9. P. Bergveld, Development, operation and application of the ion-sensitive field effect transistors as a tool for electrophysiology, IEEE Trans. Biomed. Eng., BME-19 (1972), pp. 342-351.
10. P. Bergveld and A. Sibbald, Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors, Elsevier Science Publishing Company Inc., New York (1988).
11. M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press (1989).
12. C. C. Fat, A CMOS Integrated PH Sensor, Ph. D. Dissertation of Lehigh University, Ann Arbor, (1985), MI 48106, pp. 1-12.
13. H. S. P. Wong, The Physics and Technology of The Ion Sensitive Field Effect Transistor (ISFET), Ph. D. Dissertation of Lehigh University, (1988), pp. 3-5.
14. H. Abe, M.Esashi and T. Matsuo, ISFET''s using inorganic gate thin film, IEEE Trans. ED-26 (1979) 1939-1944.
15. L. Bousse, N. F. De Rooij and P. Bergveld, Operation of Chemical Sensitive Field-Effect Sensors as a Function of the Insulator-Electrolyte Interface, ED-30 (1983), pp.1263-1270.
16. P. Bergveld, Future Applications of ISFETs, Sensors and Actuators B, 4 (1991), pp. 125-133.
17. A. Barbaro, C. Colapicchioni, E. Davini, G. Mazzamurro, A. P. Piotto and F. Porcelli, CHEMFET Devices for Biomedical and Enviromental Applications, Advanced Materials, (1992), pp. 402-408.
18. H. A. Marcel, Study of Dynamic Characteristics of Ion Sensitive Field Effect Transistors, Ph. D. Dissertation of Utah University, Ann Arbor, (1982), MI 48106, pp. 1-4.
19. J. Schenck, in Theory, Design, and Biomedical Application of Solid-State Chemical Sensors, P. W. Cheung et al., eds., FL: CRC Press, West Palm Beach (1978), pp. 165.
20. M. Esashi and T. Matsuo, Integrated micro multi ion sensor using field effect of semiconductor, IEEE Trans. Biomed. Eng., BME-25, No.2, (1978), pp.184-192.
21. T. Matsuo, K. D. Wise, An integrated field-effect electrode for bio-potential recording, IEEE Trans. Biomed. Eng., BME-21 (1974), pp. 485-487.
22. T. Matsuo and M. Esashi, Methods of ISFET fabrication, Sensors and Actuators, 1, (1981), pp.77-96.
23. S. D. Moss, J. Janata, C. C. Johnson, Potassium ion sensitive field effect transistor, Anal. Chem., Vol. 47, No. 13, (1975), pp. 2238-2243.
24. S. D. Moss, C. C. Johnson and J. Janata, Hydrogen, Calcium, and Potassium Ion-Sensitive FET Transducers: A Preliminary Report, IEEE Transactions on Biomedical Engineering, Vol. BME-25, No. 1, (1978), pp. 49-54.
25. D. Harame, Integrated Circuit Chemical Sensors, Ph. D. Dissertation, Stanford University, Stanford, CA, USA (1984).
26. A. Sibbald, P. Whalley and A. Covington, A Miniature Flow-through Cell with a Four-function CHEMFET Integrated Circuit for Simultaneous Measurements of Potassium, Hydrogen, Calcium and Sodium Ions, Analytica Chimica Acta, 159, (1984), pp.47-62.
27. P. Neužil, ISFET integrated sensor technology, Sensors and Actuators B, 24-25, (1995), pp.232-235.
28. J. Bausells, J. Carrabina, A. Errachid and A. Merlos, Ion-sensitive field-effect fabricated in a commercial CMOS technology, Sensors and Actuators B, 57, (1999), pp. 56-62.
29. W. H. Baumann, M. Lehmann, A. Schwinde, R.Ehret, M. Brischwein and B. Wolf, Microelectronic sensor system for microphysiological application on living cells, Sensors and Actuators B, 55, (1999), pp.77-89.
30. H. S. Wong and M. H. White, A CMOS-Integrated "ISFET-Operational Amplifier" Chemical Sensor Employing Differential Sensing, IEEE Trans. Electron Devices, Vol. 36, No. 3, (1989), pp. 479-487.
31. Y. G. Vlasov and A. V. Bratov, Analytical application of pH-ISFETS, Sensors and Actuators B, 10, (1992), pp.1-6.
32. D. H. Kown, B. W. Cho, C. S. Kim and B. K. Sohn, A new approach to low drift Ta2O5 pH-ISFET by RF reactive sputtering and sol-gel method, Tech. Digest, 8th Int. Conf. Solid-State Sensors and Actuators (Transducers ''95)/Eurosensors IX, Stockholm, Sweden, June 25-29, (1995), pp. 917-920.
33. P. W. Cheung, W. H. Ko, D. J. Fung, and S. H. Wong, Theory, fabrication, testing and chemical response of ion-sensitive field-effect transistor devices, in "Theory, Design, and Biomedical Application of Solid-State Chemical Sensors", P. W. Cheung et al., eds., FL: CRC Press, West Palm Beach (1978), pp. 91-117.
34. V. Rocher, J. M. Chovelon, N. J. Rennault, Y. Cros and D. Birot, An oxynitride ISFET modified for working in a differential mode for pH detection, J. Electrochem. Soc., Vol. 141, No. 2, (1994), pp. 535-539.
35. T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano and E.Niki, Ion-sensitive field effect transistors with inorganoc gate oxide for pH sensing, IEEE Trans. Electron Devices, ED-29, (1982), pp. 1936-1941.
36. H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Study of amorphous tin oxide thin films for ISFET applications, Sensors and Actuators B, 50, (1998), pp. 104-109.
37. K. Kinoshita and M. Madou, J. Electrochem. Soc., 131 (1984), pp.1084.
38. I. Lauks, J. Van der Spiegel, W. Sansen and M. Steyaert, Multispecies integrated electrochemical sensors with on-chip CMOS circuitry, Tech. Digest, IEEE Proc. 3rd International Conference on Solid-State Sensors and Actuators (Transducers’85) Philadelphia, PA, USA, June 11-14, (1985), pp. 122-124.
39. J. C. Chou and J. L. Chiang, Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing, Sensors and Actuators B, 62, (2000), pp.81-87.
40. R. P. Buck and D. E.Hackleman, Field effect potentiometric sensors, Anal. Chem., 49, (1977), pp.2315-2321.
41. P. Bergveld and N. F. de Rooij, Med. & Biol. Eng. & Comput. 17, (1979), pp. 647.
42. T. Matsuo, H. Nakajima, T. Osa and J. Anzai, Tech. Digest, in IEEE Proc. 3rd International Conference on Solid-State Sensors and Actuators (Transducers’85), Philadelphia, PA, New York, USA, June 11-14, (1985), pp. 250-253.
43. H. H. Van Den Vlekkert, C. Francis, A. Grisel and N. F. de Rooij, Solvent polymeric membrane combined with chemical solid-state sensors, Analyst, Vol.113, July, (1988), pp. 1029-1033.
44. S. Johnson, J. M. Slater and J. D. R. Thomas, Potassium ion-selective field-effect transistor (isfet) sensors: studies on gate dimensions and ion-implantation levels, Analytical Letters, 26(7), (1993), pp.1397-1412.
45. A. Uhlig, U. Schnakenberg, E. Lindner, F. Dietrich and R. Hintsche, Catheter system for potassium measurement in medical application, Tech. Digest, 8th Int. Conf. Solid-State Sensors and Actuators (Transducers ''95)/Eurosensors IX, Stockholm, Sweden, June 25-29, (1995), pp. 469-472.
46. A. Sibbald, A chemical-sensitive integrated-circuit: the operational transducer, Sensors and Actuators, 7, (1985), pp. 23-38.
47. H. H. Van Den Vlekkert, U. H. Verkerk, P. D. Van Der Wal, A. Van Wingerden, D. N. Reinhoudt, J. R. Haak, G. W. N. Honig and H. A. J. Holterman, Multi-ion sensing device for horticultural application based upon chemical modification and special packaging of ISFETs, Sensors and Actuators B, 6, (1992), pp. 34-37.
48. T. Sakai, H. Yagi and M. Shiratori, A nozzle type ultra-micro-volume multi-ion sensor using a rear-gate SIS/ISFET, Tech. Digest, 7th Int. Conf. Solid-State Sensors and Actuators (Transducer’93), Yokohama, Japan, June 7-10, (1993), pp. 386-389.
49. V. V. Cosofret, M. Erdosy, T. A. Johnson, D. A. Bellinger, R. P. Buck, R. B. Ash and M. R. Neuman, Electroanalytical and surface characterization of encapsulated implantable membrane planar microsensors, Analy. Chim. Acta, 314, (1995), pp.1-11.
50. H. H. Van Den Vlekkert, N. F. de Rooij, A. Van Den Berg and A. Grisel, Multi-ion sensing system based on glass-encapsulated pH-ISFETs and a Pseudo-REFET, Sensors and Actuators, B1, (1990), pp. 395-400.
51. P. T. Mcbride, J. Janata, P. A. Comte, S. D. Moss and C. C. Johnson, Ion-selective field-effect transistors with polymeric membranes, Analy. Chim. Acta, 101, (1978), pp.239-245.
52. B. S.hiramizu, J. Janata and S. D. Moss, Ion-selective field effect transistors with heterogeneous membranes, Analy. Chim. Acta, 108, (1979), pp.161-167.
53. K. Tsukada, M. Sebata, Y. Miyahara and H. Miyagi, Long-life multiple-ISFETs with polymeric gates, Sensors and Actuators, 18, (1989), pp.329-334.
54. K. Tsukada, Y. Miyahara, Y. Shibata and H. Miyagi, An integrated chemical sensor with multiple ion and gas sensors, Sensors and Actuators B, 2, (1990), pp.291-295.
55. S. I. Wakida, M. Yamane, K. Higashi, K. Hiiro and Y. Ujihira, Urushi matrix sodium, potassium, calcium and chloride-selective field-effect transistors, Sensors and Actuators, B1, (1990), pp. 412-415.
56. H. Nakajima, M. Esashi and T. Matsuo, The cation concentration response of polymer gate ISFET, J. Electrochem. Soc., 129(1), (1982), pp. 141-143.
57. N. V. Kolytcheva, H. Müller and J. Marstalerz, Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors, Sensors and Actuators, B58, (1999), pp. 456-463.
58. N. V. Kolytcheva, O. M. Petrukhin, N. V. Filipieva and H. Müller, Long-lived potentiometric sensors with poly(vinylchloride) and photopolymerized polyacrylate matrix anion sensitive membranes, applied on field effect transistors and silver coated ceramic substrates, Sensors and Actuators B, 48, (1998), pp. 491-500.
59. M. Battiltti, R. Mercuri, G. Mazzamurro, I. Giannini and M. Giongo, Lead ion-sensitive membranes for ISFETs, Sensors and Actuators B1, (1990), pp. 438-440.
60. J. Salardenne, J. Morcos, M. A. Allal and j. Portier, New ISFET sensitive membranes, Sensors and Actuators, B 1, (1990), pp. 385-389.
61. P. A. Comte and J. Janata, A field effect transistors as a solid-state reference electrode, Anal. Chem. Acta., 101, (1978), pp.247-250.
62. J. Janata and R. J. Huber, Ion-sensitive field-effect transistors, Ion-Selective Electrode Rev., 1, (1979), pp. 31-79.
63. A. Van Den Berg, P. Bergveld, D. N. Reinhoudt and E. J. R. Sudholter, Sensors and Actuators 8, (1985), pp. 129.
64. A. Van Den Berg, Ion sensors based on ISFET’s with synthetic ionophores, Ph. D. Dissertation, University of Twente, The Netherlands, (1988).
65. T. Matsuo and H. Nakajima, Characteristics of reference electrodes using a polymer gate ISFET, Sensors and Actuators 5, (1984), pp. 293-305.
66. M. Fujihara, M. Fukai and T. Osa, Chemically modified parylene gate field effect transistors, J. Electroanal. Chem., 106, (1980), pp. 413-418.
67. S. Tahara, M. Yoshii and S. Oka, Electrochemical reference electrode for the ion-selective field effect transistor, Chemistry Letters, (1982), pp. 307-310.
68. S. Yee, H. Jin and L.K.C. Lam, Miniature liquid junction reference electrode with micromachined silicon cavity, Sensors and Actuators, 15, (1988), pp. 337-345.
69. R.L. Smith, and D.C. Scott, A solid state miniature reference electrode, Proc. IEEE/NSF Symposium on Biosensors, Los Angeles, CA, USA, September 15-17, (1984), pp. 61-62.
70. O. Prohaska, P. Goiser, A. Jackomowicz, F. Kohl and F. Olcaytug, Miniaturized chamber-type electrochemical cells for medical application, Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux, France, July 7-10, (1986), pp.652-655.
71. A. Van Den Berg, A. Grisel, H.H. Van Den Vlekkert and N.F. De Rooij, A micro-volume open liquid-junction reference electrode for pH—ISFETs, Sensors and Actuators B, 1, (1990), pp. 425-432.
72. I-Yu Huang, Ruey-Shing Huang and Lieh-Hsi Lo, A New Structured ISFET with Integrated Ti/Pd/Ag/AgCl Electrode and Micromachined Back-side P+ Contacts, Journal of The Chinese Institute of Engineers, Vol. 25, (2002).
73. W. M. Siu and R. S. C. Cobbold, Basic properties of the Electrolyte-SiO2-Si system: physical and theoretical aspects, IEEE Trans. on Electron Devices, ED-26, 11, (1979), pp. 1805-1815.
74. D. C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev., vol. 41, (1947), pp. 441-501.
75. D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans., Vol. 70, (1974), pp. 1807-1818.
76. S. Levine and A. L. Smith, Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc., Vol. 52, (1971), pp.290-301.
77. K. Dousma, A colloidal chemical study of the formation of iron oxyhydroxide, Ph. D. dissertation, Rijksuniversiteit te Utrecht, Utrecht, (1979).
78. T. W. Healy, D. E. Yates, L. R. White and D. Chan, Nerstian and non-Nernstian potential differences at aqueous interfaces, J. Electroanal. Chem. Interf. Electrochem., Vol. 80, (1977), pp. 57-66.
79. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, (1980).
80. K. Shimada, M. Yano, K. Shibatani, Y. Komoto, M. Esashi and T. Matsuo, Application of catheter-tip i.s.f.e.t. for continuous in-vivo measurement, Med. & Biol. Eng. & Comput., 18, (1980), pp. 741-745.
81. H. Suzuki, A. Hiratsuka, S. Sasaki and I. Karube, Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability, Sensors and Actuators B, 46, (1998), pp. 104-113.
82. H. Suzuki, T. Hirakawa, S. Sasaki and I. Karube, Micromachined liquid-junction Ag/AgCl reference electrode, Sensors and Actuators B, 46, (1998), pp. 146-154.
83. H. Suzuki, H. Ozawa, S. Sasaki and I. Karube, A novel thin-film Ag/AgCl anode structure for microfabricated Clark-type oxygen electrode, Sensors and Actuators B, 53, (1998), pp. 140-146.
84. M. Lambrechts, J. Suls and W. Sansen, Thick-Film Voltammetric Sensors Based on Ruthenium Dioxide, Proceedings of the 2nd International Meeting on Chemical Sensors, Bordeaux, France, July7-10, (1986), pp. 572-575.
85. N. J. Ho, J. Kratochvil, G. F. Blackburn and J. Janata, Encapsulation of polymeric membrane-based ion-selective field-effect transistors, Sensors and Actuators 4, (1983), pp. 413-420.
86. L. Ristic, CMOS Technology: A Base of Micromachining, Microelectronics J., Vol. 20, (1989), pp. 153.
87. J. M. Crishal and A. L. Harrington, A selective etch for elemental silicon, Electrochemical Society Extended Abstracts, Vol. 109, Abst # 89, Spring Meeting, Los Angeles, (1962), pp. 71C.
88. R. M. Finne and D. L. Klein, A water soluble amine complexing agent system for etching silicon, J. E. C. S., Vol. 114, (1967), pp. 965.
89. D. B. Lee, Anisotropic etching of silicon, J. Appl. Phys., Vol. 40, (1969), pp.4569.
90. H. Muraoka and T. Y. Sumitomo, Controlled preferential etching technology, in Semiconductor Silicon, ed. H. R. Huff and R. R. Burgess, The Electrochemical Society, (1973), pp. 327.
91. K. D. Bean, Anisotropic etching of silicon, IEEE Trans. Electro. Devices, Vol. ED-25, (1978), pp. 1185.
92. L. Ristic, Sensor technology and devices, Artech House Inc., Boston, USA, (1994), pp. 49-71.
93. H. Seidel, The mechanism of anisotropic, electrochemical silicon etching in alkaline solution, Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, (1990), pp. 86-91.
94. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions─Part I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc., Vol. 137, (1990), pp. 3612-3625.
95. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions─Part II. Inffluence of dopants, J. Electrochem. Soc., Vol. 137, (1990), pp.3626-3632.
96. N. F. Raley, Y. Sugiyama and T. Van Duzer, <100> silicon etch-rate dependence on boron concentration in ethylenediamine-pyrocatechol-water solution, J. Electrochem. Soc., Vol. 131, (1984), pp. 161-171.
97. J. C. Greenwood, Ethylene Diamine-Cathechol-Water mixture shows preferential etching of p-n junction, J. Electrochem. Soc., Vol. 116, (1969), pp. 1325-1326.
98. M. Madou, Fundamentals of Microfabrication, CRC Press LLC, (1997), pp. 172-195.
99. E. D. Palik, V. M. Bermudez and O. J. Glembocki, Ellipsometric study of the etch-stop mechanism in heavily doped silicon, J. Electrochem. Soc., Vol. 132, (1985), pp. 135-141.
100. E. D. Palik, J. W. Faust, H. F. Gray and R. F. Green, Study of the etch-stop mechanism in silicon, J. Electrochem. Soc., Vol. 129, (1982), pp.2051-2059.
101. K. E. Petersen, Silicon as a mechanical material, in Proceedings of the IEEE, Vol. 70, (1982), pp. 420-457.
102. D. Harame, J. Shott, J. Plummer and J. Meindl, An implantable ion sensor transducer, Tech. Digest, IEEE International Electron Devices Meeting (IEDM-81), Washington, USA, December 7-9, (1981), pp. 467-470.
103. A. Grisel, C. Francis, E. Verney and G. Mondin, Packaging technologies for integrated electrochemical sensors, Sensors and Actuators, 17, (1989), pp. 285-295.
104. J. C.-M. Huang and K.D. Wise, A monolithic pressure-pH sensor for esophageal studies, Tech. Digest, IEEE International Electron Devices Meeting (IEDM-82), San Francisco, CA, USA, December 13-15, (1982), pp. 316-319.
105. H. H. van den Vlekkert, B. Kloeck, D. Prongue, J. Berthoud, B. Hu, N.F. De Rooij, E. Gilli and Ph. De Crousaz, A pH-ISFET and an integrated pH-pressure sensor with back-side contacts, Sensors and Actuators, 14, (1988), pp. 165-176.
106. D. Ewald, A. Van Den Berg and A. Grisel, Technology for backside contacted pH-sensitive ISFETs embedded in a p-Well structure, Sensors and Actuators B, 1, (1990), pp. 335-340.
107. U. Teravaninthorn, Y. Miyahara and T. Moriizumi, The suitability of Ta2O5 as a solid state ion-sensitive membrane, Jpn. J. Appl. Phys., 26, (1987), pp. 2116-2120.
108. Y.-L. Chin, J.-C. Chou, T.-P. Sun, H.-K. Liao, W.-Y. Chung and S.-K. Hsiung, A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process, Sensors and Actuators B, 75, (2001), pp. 36-42.
109. M. Steyaert, M. Lambrechts and W. Sansen, Noise power spectrum density analysis of planar Ag/AgCl electrodes, Sensors and Actuators, 12, (1987), pp. 185-192.
110. C. L. Hedberg, Handbook of Auger Electron Spectroscopy-Third Edition, Physical Electronics, Minnesota, USA, (1995).
111. L. J. Bousse, P. Bergveld and H.J.M. Geeraedts, Properties of Ag/AgCl electrodes fabricated with IC-compatible technologies, Sensors and Actuators, 9, (1986), pp. 179-197.
112. G. F. Blackburn, Molecular adsorption measurement with chemically sensitive field effect transistors, Ph. D. Thesis, The University of Utah, USA, (1983).
113. U. Schnakenberg, T. Lisec, R. Hintsche, I. Kuna, A. Uhlig and B. Wagner, Novel potentiometric silicon sensor for medical devices, Tech. Digest, 8th Int. Conf. Solid-State Sensors and Actuators (Transducers ''95)/Eurosensors IX, Stockholm, Sweden, June 25-29, (1995), pp. 959-962.
114. P. Woias, L. Meixner and P. FrÖstl, Slow pH response effects of silicon nitride ISFET sensors, Sensors and Actuators B, 48, (1998), pp. 501-504.
115. I.-Y. Huang and R.-S. Huang, A pH sensor with integrated planar reference electrode, Tech. Digest, 10th Int. Conf. Solid-State Sensors and Actuators (Transducers ''99), Sendai, Japan, June 7-10, (1999), pp. 644-647.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top