|
[1] Y. Zorian, “Test requirements for embedded core-based systems and IEEE P1500”, in Proc. Int. Test Conf. (ITC), Oct. 1997, pp. 191—199. [2] K.-J. Lin and C.-W. Wu, “Testing content-addressable memories using functional fault models and March-like algorithms”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 5, pp. 577—588, May 2000. [3] R. K. Gupta and Y. Zorian, “Introducing core-based system design”, IEEE Design & Test of Computers, vol. 14, no. 4, pp. 15—25, Oct.-Dec. 1997. [4] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based system chips”, IEEE Computer, vol. 32, no. 6, pp. 52—60, June 1999. [5] E. J. Marinissen and Y. Zorian, “Challenges in testing core-based system ICs”, IEEE Communications Magazine, vol. 37, no. 6, pp. 104—109, June 1999. [6] E.Marinissen, R. Kapur, and Y. Zorian, “On using IEEE P1500 SECT for test plug-n-play”,in Proc. Int. Test Conf. (ITC), 2000, pp. 770—777. [7] J. Rajski, N. Tamarapalli, and J Tyszer, “Automated synthesis of phase shifters for built in self-test applications”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp. 1175—1188, Oct. 2000. [8] K. T. Cheng and C. J. Lin, “Timing-driven test point insertion for full-scan and partial-scan BIST”, in Proc. Int. Test Conf. (ITC), 1995, pp. 506—514. [9] H. J. Wunderlich, “Multiple distributions for biased random test patterns”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 584—593, June 1990. [10] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift register”, IEEE Trans. Computers, vol. 44, no. 2, pp. 223—233, Feb. 1995. [11] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, and D. Medina, “Industrial BIST of embedded RAMs”, IEEE Design & Test of Computers, vol. 12, no. 3, pp. 86—95, Fall 1995. [12] C.-W.Wu, “Testing embedded memories: Is BIST the ultimate solution?”, in Proc. Seventh IEEE Asian Test Symp. (ATS), Singapore, Dec. 1998, pp. 516—517. [13] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST core for embedded DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59—70, Jan.-Mar. 1999. [14] K. Zarrineh and S. J. Upadhyaya, “On programmable memory built-in self test architecutres”,in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 1999, pp. 708—713. [15] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS: A BIST complier for embedded memories”, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299—307. [16] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and M. Lobetti-Bodorni, “A programmable BIST architecture for clusters of multiple-port SRAMs”, in Proc. Int. Test Conf. (ITC), 2000, pp. 557—566. [17] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation for random access memories”, in Proc. IEEE VLSI Test Symp. (VTS), Montreal, Apr. 2000, pp. 291—296. [18] C.-H. Tsai and C.-W. Wu, “Processor-programmable memory BIST for bus-connected embedded memories”, in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Yokohama, Jan. 2001, pp. 325—330. [19] K. P. Parker, The Boundary-Scan Handbook, Kluwer Academic Publishers, Boston, 1992. [20] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based system chips”, in Proc. Int. Test Conf. (ITC), Oct. 1998, pp. 130—143. [21] V. Immaneni and S. Raman, “Direct access test scheme─design of block and core cells for embedded ASICS”, in Proc. Int. Test Conf. (ITC), 1990, pp. 488—492. [22] M. Benabdenbi, W. Maroufi, and M. Marzouki, “CAS-BUS: a scalable and reconfigurable test access mechanism for systems on a chip”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 2000, pp. 141—145. [23] E. J. Marinissen, R. Arendsen, and G. Bos, “A structured and scalable mechanism for test access to embedded reusable cores”, in Proc. Int. Test Conf. (ITC), 1998, pp. 284—293. [24] L. Whetsel, “Addressable test ports─an approach to testing embedded cores”, in Proc. Int. Test Conf. (ITC), 1999, pp. 1055—1061. [25] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault modeling and simulation for crosstalk in system-on-chip interconnects”, in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 1999, pp. 297—303. [26] A. Vittal, L. H. Chen, M. Marek-Sadowska, K.-P. Wang, and S. Yang, “Crosstalk in VLSI interconnections”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 12, pp. 1817—1824, Dec. 1999. [27] C. P. Ravikumar and S. Chopra, “Testing interconnects in a system chip”, in Int. Conf. VLSI Design, Jan. 2000, pp. 388—391. [28] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in self-test and self-diagnosis scheme for embedded SRAM”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000, pp. 45—50. [29] J.-F. Li and C.-W. Wu, “Memory fault diagnosis by syndrome compression”, in Proc. Design, Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 97—101. [30] J.-F. Li, R.-S. Tzeng, and C.-W. Wu, “Using syndrome compression for memory built-in self-diagnosis”, in Proc. Int. Symp. VLSI Technology, Systems, and Applications (VLSITSA), Hsinchu, Apr. 2001, pp. 303—306. [31] S. Runyon, “Testing big chips becomes an internal affair”, IEEE Spectrum, pp. 49—55, Apr. 1999. [32] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. P. Higgins, and J. L. Lweandowski, “Built in self repair for embedded high density SRAM”, in Proc. Int. Test Conf. (ITC), Oct. 1998, pp. 1112—1119. [33] S. Nakahara, K. Higeta, M. Kohno, T. Kawamura, and K. Kakitani, “Built-in self-test for GHz embedded SRAMs using flexible pattern generator and new repair algorithm”, in Proc. Int. Test Conf. (ITC), 1999, pp. 301—310. [34] D. K. Bhavsar, “An algorithm for row-column self-repair of RAMs and its implementation in the Alpha 21264”, in Proc. Int. Test Conf. (ITC), 1999, pp. 311—318. [35] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hidaka, “A built-in selfrepair analyzer (CRESTA) for embedded DRAMs”, in Proc. Int. Test Conf. (ITC), 2000, pp. 567—574. [36] T. Yamaguchi, M. Tilger, M. Ishida, and D. S. Ha, “An efficient method for compressing test data”, in Proc. Int. Test Conf. (ITC), Washington, DC, Nov. 1997, pp. 79—88. [37] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and decompression architectures based on Golomb codes”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 3, pp. 355—368, Mar. 2001. [38] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan chains and its application to testing core-based designs”, in Proc. Int. Test Conf. (ITC), 1998, pp. 458—464. [39] Y. Zorian, “A distributed BIST control scheme for complex VLSI devices”, in Proc. IEEE VLSI Test Symp. (VTS), 1993, pp. 4—9. [40] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, and Y. Zorian, “HD-BIST: a hierarchical framework for BIST scheduling and diagnosis in SOCs”, in Proc. Int. Test Conf. (ITC), 1999, pp. 1038—1045. [41] K.-J. Lee and C.-I. Huang, “A hierarchical test control architecture for core based design”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000, pp. 248—253. [42] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, IEEE Standards Department, Piscataway, May 1990. [43] S. F. Oakland, “Considerations for implementing IEEE 1149.1 on system-on-a-chip integrated circuits”, in Proc. Int. Test Conf. (ITC), 2000, pp. 628—637. [44] L. Whetsel, “A IEEE 1149.1 base test access architecture for ICs with embedded cores”, in Proc. Int. Test Conf. (ITC), 1997, pp. 69—78. [45] D. Bhattacharya, “Hierarchical test access architecture for embedded cores in an integrated circuit”, in Proc. IEEE VLSI Test Symp. (VTS), 1998, pp. 8—14. [46] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling tests for VLSI systems under power constraints”, IEEE Trans. VLSI Systems, vol. 5, no. 2, pp. 175—185, June 1997. [47] M. Sugihara, H. Date, and H. Yasuura, “A novel test methodology for core-based system LSIs and a testing time minimization problem”, in Proc. Int. Test Conf. (ITC), 1998, pp. 465—472. [48] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear programming”, IEEE Trans. VLSI Systems, vol. 19, no. 10, pp. 1163—1174, Oct. 2000. [49] E. J. Marinissen, S. Goel, and M. Lousberg, “Wrapper design for embedded core test”, in Proc. Int. Test Conf. (ITC), 2000, pp. 911—920. [50] E. Larsson and Z. Peng, “An integrated system-on-chip test framework”, in Proc. Design, Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 138—144. [51] M. Benabdenbi, W. Maroufi, and M. Marzouki, “Testing TAPed cores and wrapped cores with the same test access mechanism”, in Proc. Design, Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 150—155. [52] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a standard for embedded core test: An example”, in Proc. Int. Test Conf. (ITC), 1999, pp. 616—626. [53] R. Kapur, M. Lousberg, T. Taylor, B. Keller, P. Reuter, and D. Kay, “CTL the language for describing core-based test”, in Proc. Int. Test Conf. (ITC), 2001, pp. 131—139. [54] IEEE, “IEEE P1500 standard for embedded core test (SECT)”, http://grouper.ieee.org/groups/1500/, 2002. [55] V. Iyengar and K. Chakrabarty, “Test bus sizing for system-on-a-chip”, IEEE Trans. Computers, vol. 51, no. 5, pp. 449—459, May 2002. [56] H.-J. Huang, J.-F. Li, J.-B. Chen, C.-P. Su, C.-W. Wu, C. Cheng, S.-I Chen, C.-Y. Hwang, and H.-P. Lin, “Test wrapper design automation for system-on-chip”, in Proc. 12th VLSI Design/CAD Symp., Hsinchu, Aug. 2001. [57] J.-F. Li, H.-J. Huang, J.-B. Chen, C.-P. Su, C.-W. Wu, C. Cheng, S.-I Chen, C.-Y. Hwang, and H.-P. Lin, “A hierarchical test scheme for system-on-chip designs”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 2002, pp. 486—490. [58] J.-F. Li, H.-J. Huang, J.-B. Chen, C.-P. Su, C.-W. Wu, C. Cheng, S.-I Chen, C.-Y. Hwang, and H.-P. Lin, “A hierarchical test methodology for system-on-chip”, IEEE Micro, 2002 (accepted). [59] C.-W. Wu, J.-F. Li, and C.-T. Huang, “Core-based system-on-chip testing: Challenges and opportunities”, J. Chinese Institute of Electrical Engineering, vol. 8, no. 4, pp. 335 353, Nov. 2001. [60] J.-F. Li, R.-S. Tzeng, and C.-W.Wu, “Diagnostic data compression techniques for embedded memories with built-in self-test”, J. Electronic Testing: Theory and Application, vol. 18, no. 4, pp. 515—527, Aug. 2002. [61] J. Aerts and E. J.Marinissen, “Scan chain design for test time reduction in core-based ICs”, in Proc. Int. Test Conf. (ITC), 1998, pp. 448—457. [62] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons, Chichester, England, 1991. [63] R. P. Treuer and V. K. Agarwal, “Fault location algorithms for repairable embedded RAMs”, in Proc. Int. Test Conf. (ITC), 1993, pp. 825—834. [64] L. Shen and B. F. Cockburn, “An optimal march test for locating faults in DRAMs”, in Proc. IEEE Int. Workshop on Memory Testing, 1993, pp. 61—66. [65] M. F. Chang, W. K. Fuchs, and J. H. Patel, “Diagnosis and repair of memory with coupling faults”, IEEE Trans. Computers, vol. 38, no. 4, pp. 493—500, Apr. 1989. [66] V. N. Yarmolik, Y. V. Klimets, A. J. van de Goor, and S. N. Demidenko, “RAM diagnostic tests”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, 1996, pp. 100—102. [67] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, “Diagnostic testing of embedded memories using BIST”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 2000, pp. 305—309. [68] D. Niggemeyer and E. Rudnick, “Automatic generation of diagnostic March tests”, in Proc. IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 299—304. [69] J. Zhao, F. J. Meyer, and F. Lombardi, “Adaptive approaches for fault detection and diagnosis of interconnects of random access memories”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 1998, pp. 110—116. [70] J. Zhao, F. J. Meyer, and F. Lombardi, “Maximal diagnosis of interconnects of random access memories”, in Proc. IEEE VLSI Test Symp. (VTS), 1999, pp. 378—383. [71] R. David and A. Fuentes, “Fault diagnosis of RAM’s from random testing experiments”, IEEE Trans. Computers, vol. 39, no. 2, pp. 220—229, Feb. 1990. [72] R. Dekker, F. Beenker, and L. Thijssen, “A realistic fault model and test algorithm for static random access memories”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 567—572, June 1990. [73] A. J. van de Goor, “Using march tests to test SRAMs”, IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8—14, Mar. 1993. [74] D. S. Suk and S. M. Reddy, “A march test for functional faults in semiconductor random access memories”, IEEE Trans. Computers, vol. 30, no. 12, pp. 982—985, Dec. 1981. [75] A. J. van de Goor, I. B. S. Tlili, and S. Hamdioui, “Converting march tests for bit-oriented memories into tests for word-oriented memories”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 1998, pp. 46—52. [76] V.-K. Kim and T. Chen, “On comparing functional fault coverage and defect coverage for memory testing”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 11, pp. 1676—1683, Nov. 1999. [77] S. Hamdioui and A. J. van de Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000, pp. 131—138. [78] C.-F.Wu, C.-T. Huang, C.-W.Wang, K.-L. Cheng, and C.-W.Wu, “Error catch and analysis for semiconductor memories using March tests”, in Proc. IEEE/ACM Int. Conf. Computer- Aided Design (ICCAD), San Jose, Nov. 2000, pp. 468—471. [79] K.-L. Cheng, M.-F. Tsai, and C.-W. Wu, “Efficient neighborhood pattern-sensitive fault test algorithms for semiconductor memories”, in Proc. IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 225—237. [80] C.-W. Wu and C.-T. Huang, “Communications IP: Instruction set architecture, functional units, and test circuitry of a communications processor core”, NSC Engineering Science & Technology Bulletin, , no. 58, pp. 139—143, Oct. 2001, (in Chinese). [81] P. Mazumder, J. H. Patel, and W. K. Fuchs, “Methodologies for testing embedded content addressable memories”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 1, pp. 11—20, Jan. 1988. [82] A. J. McAuley and C. J. Cotton, “A self-testing reconfigurable CAM”, IEEE Journal of Solid-State Circuits, vol. 26, no. 3, pp. 257—261, Mar. 1991. [83] S. Kornachuk, L. McNaughton, R. Gibbins, and B. Nadeau-Dostie, “A high speed embedded cache design with non-intrusive BIST”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, 1994, pp. 40—45. [84] Y. S. Kang, J. C. Lee, and S. Kang, “Parallel BIST architecture for CAMs”, Electronics Letters, vol. 33, no. 1, pp. 30—31, Jan. 1997. [85] T. Chadwick, T. Gordon, R. Nadkarni, and J. Rowland, “An ASIC-embedded content addressable memory with power-saving and design for test features”, in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2001, pp. 183—186. [86] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “A serial interfacing technique for external and built-in self-testing of embedded memories”, IEEE Design & Test of Computers, vol. 7, no. 2, pp. 56—64, Apr. 1990. [87] K. J. Schultz, “Content-addressable memory core cells: A survey”, Integration, the VLSI J., vol. 23, pp. 171—188, 1997. [88] R. Nair, S. M. Thatte, and J. A. Abraham, “Efficient algorithms for testing semiconductor random access memories”, IEEE Trans. Computers, vol. 27, no. 6, pp. 572—576, June 1978. [89] M. Marinescu, “Simple and efficient algorithms for functional RAM testing”, in Proc. Int. Test Conf. (ITC), 1982, pp. 236—239. [90] J.-F. Li, R.-S. Tzeng, and C.-W.Wu, “Testing and diagnosing embedded content addressable memories”, in Proc. IEEE VLSI Test Symp. (VTS), Monterey, California, Apr. 2002, pp. 389—394. [91] C.-F.Wu, C.-T. Huang, and C.-W.Wu, “RAMSES: a fast memory fault simulator”, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Albuquerque, Nov. 1999, pp. 165—173. [92] J. Zhao, S. Irrinki, M. Puri, and F. Lombardi, “Testing SRAM-based content addressable memories”, IEEE Trans. Computers, vol. 49, no. 10, pp. 1054—1063, Oct. 2000. [93] A. L. Crouch, M. Mateja, T. L.McLaurin, J. C. Potter, and D. Tran, “The testability features of the 3rd generation ColdFire family of microprocessors”, in Proc. Int. Test Conf. (ITC), 1999, pp. 913—922. [94] M. Rich, “A method of flexible catch RAM display for memory testing”, in Proc. Int. Test Conf. (ITC), 1986, p. 222. [95] B. Brown, J. Donaldson, B. Gage, and A. Joffe, “Hardware compression speeds on bitmap fail display”, in Proc. Int. Test Conf. (ITC), 1997, pp. 89—93. [96] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling embedded memory diagnosis via test response compression”, in Proc. IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 292—298. [97] C. Hunter, “Integrated diagnostics for embedded memory built-in self test on powerPC devices”, in Proc. IEEE Int. Conf. Computer Design (ICCD), 1997, pp. 549—554. [98] J.-F Li, K.-L. Cheng, C.-T. Huang, and C.-W.Wu, “March-based RAM diagnosis algorithms for stuck-at and coupling faults”, in Proc. Int. Test Conf. (ITC), Baltmore, Oct. 2001, pp.758—767. [99] T. Yabe, S.Miyano, K. Sato,M.Wada, R. Haga, O.Wada, M. Enkaku, T. Hojyo, K. Mimoto, M. Tazawa, T. Ohkubo, and K. Numata, “A configurable DRAM macro design for 2112 derivative organizations to be synthesized using a memory generator”, IEEE Journal of Solid-State Circuits, pp. 1752—1757, Nov. 1998. [100] S. S. Iyer and H. L. Kalter, “Embedded DRAM technology: opportunities and challenges”,IEEE Spectrum, pp. 56—64, Apr. 1999. [101] D. A. Lelewer and D. S. Hirschberg, “Data compression”, ACM Computing Surveys, vol. 19, no. 3, pp. 261—296, Sept. 1987. [102] D. A. Huffman, “A method for the construction of minimum-redundancy codes”, Proc. IRE, vol. 40, pp. 1098—1101, Sept. 1952. [103] J. M. Mulder, N. T. Quach, and M. J. Flynn, “An area model for on-chip memories and its application”, IEEE Journal of Solid-State Circuits, vol. 26, no. 2, pp. 98—106, Feb. 1991.
|