|
[1] Adams, R. A., Sobolev Space, Academic Press, New York 1975. [2] Benci, V. and Cerami, G., Positive solutions of some nonlinear elliptic equations in exterior domain, Arch. Rational Mech. Anal. 99 (1987), 283-300. [3] Berestycki, H. and Lions, P. L., Nonlinear scalar field equations. I. Existence of ground state, Arch. Rat. Mech. Anal., 82(1983), 313-345. [4] Brézis, H., Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983. [5] Brézis, H. and Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963. [6] Chabrowski, J., Variational Methods for Potential Operator Equations, Walter de Gruyter Studies in Mathematics 24, Berlin New York, 1997. [7] Chabrowski, J., Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, 1999. [8] Chen, K. C., Chen, K. J., and Wang, H. C., Symmetry of positive solutions of semilinear elliptic equations on infinite strip domains, J. Differential Equations, 148(1998), 1-8. [9] Chen, K. J., Lee, C. S., and Wang, H. C., Semilinear elliptic problems in interior and exterior flask domain, Commun. Appl. Nonlinear Anal., 5(1998), 81-105. [10] Chen, G., Ni, W. M., and Zhou, J., Algorithms and visualization for solution of nonlinear elliptic problems, International Journal of Bifurcation and Chaos, 10(2000), 1565-1612. [11] Chen, K. J. and Wang, H. C., A necessary and sufficient condition for Palais-Smale conditions, SIAM Journal on Math. Anal., 31(1999), 154-165. [12] Dancer, E. N., The effect of domain shape on the number of positive solution of certain nonlinear equations, J. of Diff. Equation 74(1988), 120-156. [13] Del Pino, M. A. and Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4(1996), 121-137. [14] Del Pino, M. A. and Felmer, P. L., Least energy solutions for elliptic equations in unbounded domains, Proc. Royal Society Edinburgh, 126A(1996), 195-208. [15] Esteban, M. J. and Lions, P. L., Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Society Edinburgh, 93A(1982), 1-12. [16] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1978), 209-243. [17] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in {R}^{N}, Adv. in Math. Suppl. Stud., 7A (1981), 369-402. [18] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983. [19] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, 1985. [20] Han Q. and Lin F. H., Elliptic Partial Differential Equations, Courant Institute of Math. Sciences, New York University. [21] Kwong, M. K., Uniqueness of positive solution of \Delta u-u+u^{p}=0 in {R}^{N}, Arch. Rat. Math. Anal. 105(1989), 243-266. [22] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; 223-283. [23] Lions, P. L., Symetrie et compacite dans les espaces de Sobolev, J. of Functional Anal., 49 (1982), 315-334. [24] Lien, W. C., Tzeng, S. Y., and Wang, H. C., Existence of solutions of semilinear elliptic problems on unbounded domains, Diff. and Integ. Eqns., 6(1993), 1281-1298. [25] Palais, R. S., The principle of symmetric criticality, Comm. Math. Phys. 69(1979), 19-30. [26] Palais, R. S. and Smale, S., A generalized Morse theory, Bull. Amer Math. Soc. 70 (1964), 165-171. [27] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. [28] Struwe, M., Variational Methods, Springer-Verlag, Berlin-Heidelberg, Second edition, 1996. [29] Wang, H. C., A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc., 352(2000), 4237-4256. [30] Willem, M., Minimax Theorems, Birkhauser Verlag, Basel, 1996. [31] Zeidler, E., Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.
|