|
[Au] T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Die Grundlehren der Math. Wissenschaften, Vol.252, Springer-Verlag, New York, 1982. [Be] A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1986. [Ca] E. Calabi, Extremal Kähler Metrics, Seminars on Differential Geometry (S.T. Yau, ed.), Princeton Univ. Press and Univ. of Tokyo Press, Princeton, New York, 1982, pp.259-290. [Ch] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Commun. Pure and Appl. Math., XLV (1992), 1003-1014. [Cho] ---------, The Ricci flow on 2-sphere, J. Diff. Geom. 33(1991), 325-334. [CHW] S.-C. Chang, S.-K. Hong and C.-T. Wu, The Harnack estimate for the modified Ricci flow on complete R², to appear in Rocky Mountain J. of Math. [CW1] S.-C. Chang, C.-T. Wu, Mean curvature flow of Lagrangian tori in R4, preprint. [CW2] ---------, Extremal metrics for quadratic functional of scalar curvature on complete noncompact 3-manifolds, in preparation. [CW3] ---------, Extremal metrics for quadratic functional of scalar curvature on closed 3-manifolds, preprint. [CW4] ---------, On the existence of extremal metrics for L²-norm of scalar curvature on closed 3-manifolds, J. of Mathematics Kyoto University, Vol. 39, No 3 (1999), 435-454. [Ch1] S.-C. Chang, Critical Riemannian 4-Manifolds, Math. Z. 214 (1993), 601-625. [Ch2] ---------, A Harnack Estimate for The Calabi Flow on closed 4-Manifolds, preprint. [Ch3] ---------, The Calabi Flow on Riemann Surfaces, preprint. [Ch4] ---------, The Calabi Flow on Einstein Manifolds, Lectures on Analysis and Geometry( S.T. Yau ed.) International Press, Hong Kong, 1997, pp. 29-39. [Ch5] ---------, Existence and Convergence of Solutions of Non-linear Evolution Equations on 4-manifolds, Lectures on Analysis and Geometry( S.T. Yau ed.) International Press, Hong Kong, 1997, pp. 41--50. [Ch6] ---------, On the Existence of Nontrivial Extremal Metrics on Complete Noncompact Surfaces, Math. Ann. (to appear). [Ch7] ---------, Global Existence and Convergence of Solutions of Calabi Flow on Surfaces, J. of Math. Kyoto University Vol. 40, No. 2 (2000), 363-377. [Ch8] ---------, Global Existence and Convergence of Solutions of the Calabi Flow on Einstein $4$-Manifolds, Nagoya Math. J. Vol. 163 (2001), 193-214. [Ch9] ---------, Compactness Theorems and The Calabi Flow on Kaehler Surfaces with Stable Tangent Bundle, Math. Ann.318 (2000), 315-340. [Cha] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984. [Chr] P.T. Chruściel, Semi-Global Existence and Convergence of solutions of the Robinson-Trautman (2-Dimensional Calabi) Equation, Commun. Math. Phys. 137 (1991), 289-313. [CY1] S.-Y. A. Chang, P. Yang, Compactness of Isospectral Conformal Metrics on S³, Comment. Math. Helvetici 64 (1989), 363-374. [CY2] ---------, Isospectral Conformal Metrics on 3-manifolds, J. Ameri. Math. Soc. 3 (1990), 117-145. [Cr] C.B. Croke, Some Isoperimetric Inequalities and Eigenvalue Estimates, Ann. Sci. Ec. Norm. Super. 13 (1980), 419-435. [De] D. DeTurck, Deforming Metrics in the Direction of Their Ricci Tensors, J. Differential Geom. 18 (1983), 157-162. [GH] M.Gage and R.S. Hamilton, The Shrinking of Convex Plane Curves by Heat Equation, J. Diff. Geom. 23 (1986), 69-96. [Gr] M. Grayson, Shortening embedded curves, Ann. of Math, 129 (1989), 71-111. [Gu] M. J. Gursky, Compactness of Conformal Metrics with Integral Bounds on Curvature, Duke Math. J. Vol. 72, No. 2 (1993), 339-367. [H1] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306. [H2] ---------, The Ricci flow on surface, Mathematics and General Relativity, J. Isenberg, ed., Contemp. Math. Vol. 71, AMS, 1988, 237-262. [H3] ---------, The Harnack estimate for the Ricci flow, J. Diff. Geom. 37 (1993), 225-243. [Hu] G. Huisken, Flow by Mean Curvature of Convex Surfaces into Spheres, J. Diff. Geom. 20 (1984), 237-26 [HS] G. Huisken and C. Sinestrari, Mean Curvature Flow Singularities for Mean Convex Surfaces, Calc. Var. 8(1999), 1-14. [Ka] J.L. Kazdan, Deformation to Positive Scalar Curvature on Complete Manifolds, Math. Ann. 261 (1982), 227-234. [KW] J.L. Kazdan, F.W. Warner, Existence and Conformal Deformation of Metrics with Prescribed Gaussian and Scalar Curvatures, Ann. of Math. 101 (2) (1975), 317-331. [Lu] A. Lunardi, Asymptotic Exponential Stability in Quasilinear Parabolic Equations, Nonlin. Anal. 9 (1985), 563-586. [LT] P. Li, L. -F. Tam, The Heat Equation and Harmonic Maps of Complete Manifolds, Invent. Math. 105 (1991), 1-46. [Sh1] W.-X. Shi, Deforming the metric on complete noncompact Riemannian manifolds, J. Diff. Geom. 30 (1989), 223-301. [Sh2] ---------,Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Diff. Geom. 30 (1989), 303-394. [Si] L. Simon, Asymptotics for a Class of Nonlinear Evolution Equations, with Applications to Geometric Problems, Ann. of Math., 118 (1983), 525-571. [Sm] K. Smoczyk, A canonical Way to Deform a Lagrangian Submanifold, preprint 1996. [SY] R. Schoen & S.-T. Yau, Lectures on Differential Geometry, International Press, 1994. [Wa1] M.-T. Wang, Mean curvature flow of surfaces in Einstein 4-manifolds, to appear in J.D.G. [Wa2] ---------, Deforming area preserving diffeomorphism of surfaces by mean curvature flow, preprint. [W1] C.-T. Wu, The modified Ricci flow on complete R², in preparation. [Wu] L.-F. Wu, The Ricci flow on complete R², Commun. in Analysis and Geometry, Vol. 1, No. 3 (1993), 439-472. [Zh] J. Zhiren, A Counterexample to the Yamabe Problem for Complete Noncompact Manifolds, Lecture Notes in Mathematics, 1306, Springer-Verlag, Berlin, 1988.
|