# 臺灣博碩士論文加值系統

(3.233.217.106) 您好！臺灣時間：2022/08/17 13:03

:::

### 詳目顯示

:

• 被引用:0
• 點閱:107
• 評分:
• 下載:0
• 書目收藏:0
 1.質環上具有導算的子環 假定R是一個非交換且特徵數不為2的質環, 且d是R上的非零導算.並假定U是不在中心的Lie理想且U^{d}亦不在中心. 若d是一個外導算, 則由{[d(x),x];x屬於U}生成的子環包含一個非零的理想但必須排除R滿足S_4. 2.半質環上的喬登廣義導算 假定R是一個特徵數不為2的半質環, 則R上的每個喬登廣義導算都是廣義導算.
 1. On certain subrings of prime rings with derivations Let R be a noncommutative prime ring with nonzero derivation d. U is a noncentral Lie ideal of R and U^{d} is not contained in Z. If d is outer, then the subring of R generated by {[d(x),x] ;x belong to U} contains a nonzero ideal of R except charR=2 and R satisfies S_{4}. 2. Jordan generalized derivations on semiprime rings Let R be a 2-torson free semiprime ring, then every Jordan generalized derivation on R is a generalized derivation.
 Introduction Preliminaries ChapterⅠ. On certain subrings of prime rings with derivations ChapterⅡ. Jordan generalized derivations on semiprime rings References
 [1] O. D. Avraamova, Lie ideals and derivations of semiprime rings. Vestnik Moskov. Univ. Ser. I Mat. Meh (Egnl. Transl. Moscow Univ. Math. Bull.) 44, (1989), 71-73[2] J. Bergen, I.N Herstein and J. Kerr, Lie ideals and derivations of prime rings. Algebra 71 (1981) no1, 259-267.[3] M. Bresar, Centralizing mappings and derivations in prime rings,Algebra 156 (1993), 385-394.[4] M. Bresar and J. Vukman, On certain subrings of prime rings with derivations. Austral. Math. 54 (1993), 133-141.[5] H. E. Bell and W. S. Martindale 3rd, Centralizing mappings of semiprime rings. Canda. Math. Bull 30 (1987), 92-101.[6] M. Bresar, On certain pairs of functions of semiprime rings. Pro. Amer. Math. Soc. 120 (1994), 709-713.[7] M. Bresar and J. Vukman, Jordan derivations of prime rings. Bull. Austral. Math. Soc. 37 (1988), 321-322.[8] M. Bresar, Jordans derivations on semiprime rimgs. Pro. Amer. Math. Soc 104 (1988) no4, 1003-1006.[9] M. A. Chebotar, On certain subrings and ideals of prime rings. First international Tainan-Moscow Algebra Workshop, Walter de Gruyter (1996), 177-180.[10] M. A. Chebotar and P.-H Lee, On certain subrings of prime rings with derivations. Algebra 29 (2001), 3083-3087.[11] C.-L Chung and T.-K Lee, A note on certain subgroups of prime rings with derivations. Comm Algebra, to appear.[12] C.-L Chung. The additive subgroup generalized by a polymial. Isr. J. Math. vol 59, (1987), 98-106.[13] I. N. Herstein, Jordan derivations of prime rings. Pro. Amer. Soc. 8, (1957), 1104-1110.[14] I. N. Herstein, Topics in ring theory. Univ of Chicago Press, Chicago (1969).[15] B. Havla, Generalized derivations in rings. Comm Algebra 26, (1998), 1147-1166.[16] V. K. Kharchenko, Differential identities of semiprime rings. Algebra and Logic 18 (1979 ), 58-80.[17] T.-K Lee, Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinca. 20 (1992), 27-38.[18] P.-H Lee and T.-K Lee, On derivations of prime rings. Chinese J.Math 9 (1981), 107-110.[19] Mohammad Asfraf and Nadeem-Ur-Rehman, On Jordan generalized derivations in rings. Math. J. Okayama Univ {42} (2000), 7-9.[20] E. Posner, Derivations in prime rings. Pro. Amer. Math. Soc (1957), 1093-1100.[21] T-L Wong, Derivations with power-central values on multilinear polynomials. Algebra Colloq {3} (1996), no4 , 369-378.[22] T.-L Wong, On certain subgroups of semiprime rings with derivations. to appear.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 環上的斜導算

 無相關期刊

 1 特徵p的特殊值之間的代數關係 2 德林費模上的結構 3 OnArithmeticofCurvesoverFunctionFields 4 高維度球上哈帝空間裡解析函數零點之研究 5 愛思特般理翁域的描述及其應用 6 《山海經》幻角新造－陳慧雯水墨創作論述 7 利用氧化石墨烯偵測乳癌細胞暴露TCDD之免疫逃脫下miR-21表現情形 8 氯硝柳胺治療對於瀰漫性B細胞淋巴瘤癌化進展和免疫逃脫之基因網路分析 9 基於視覺之意識遞延科技藝術創作論述 10 探討直流濺鍍和交流濺鍍沉積在玻璃基板之鉍薄膜之間的表面形貌 11 家蠶絲質蛋白敷料共軛第一型類胰島素生長因子應用於藥物遞送及糖尿病傷口治療之研究 12 搭載免疫刺激因子之水膠疫苗作為小鼠原位乳癌模型之治療 13 重組記憶 —潘嘉泠繪畫創作論述 14 任何位置與特徵下之圓錐曲線的Poncelet定理 15 探討函數體上的Drinfeld-Siegel可逆模函數

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室