|
[1] A. Bahri and P. L. Lions, On the existence of positive solutions of semilinear elliptic equations in unbounded domains, Ann. I. H. P. Analyse Nonlineaire 14 (1997), 365-413. [2] A. K. Ben-Naoum, C. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal. 26 (1996), 823-833. [3] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of ground state, Arch. Rat. Mech. Anal., 82(1983), 313-345. [4] H. Brézis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963. [5] J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. PDE 3 (1995), 493-512. [6] J. Chabrowski, Variational Methods for Potential Operator Equations, Walter de Gruyter, Berlin, New York, 1999. [7] J. Chabrowski, Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, 1999. [8] K. J. Chen and H. C. Wang, A necessary and sufficient condition for Palais─Smale conditions, SIAM Journal on Math. Anal. 31 (1999), 154-165. [9] M. A. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE 4 (1996), 121-137. [10] M. A. Del Pino and P. L. Felmer, Least energy solutions for elliptic equations in unbounded domains, Proc. Royal Society Edinburgh, 126A (1996), 195-208. [11] W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Diff. and Integ. Eqns. 6 (1993), 1281-1298. [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; 223-283. [13] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. [14] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162. [15] C. A. Stuart, Bifurcation in Lp (RN)for a semilinear elliptic equation}, Proc. London Math. Soc. 45 (1982), 169-192. [16] H. C. Wang, A Palais─Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc. 352 (2000), 4237-4256. [17] M. Willem, Minimax Theorems, Birkhauser Verlag, Basel, 1996. [18] E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.
|