跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈聖智
研究生(外文):S. C. Shen
論文名稱:微型高強度磁驅式致動器及關鍵光學元件之研製
論文名稱(外文):Design and Fabrication of High Power Microelectromagnetic Actuator and Micro-optical Components
指導教授:周懷樸
指導教授(外文):H. P. Chou
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:126
中文關鍵詞:微機電系統微光學開關準分子雷射剝蝕加工聚亞醯胺薄膜微球透鏡晶片接合
外文關鍵詞:MEMSMicro-optical switchExcimer laser ablationSuspension diaphragmMicro-ball lensWafer bonding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文採用新穎設計技術研究發展完成靈巧的微光學開關,在機構設計方面,反射鏡面是設計在由四根懸臂樑所支撐的薄膜平台上,並可藉由電磁力驅動產生垂直作動;在製程方面,以準分子雷射加工懸吊薄膜之圖案,可增進元件結構設計的多樣性;在光纖傳輸方面,是以凸角補償蝕刻技術在V型槽內建構小凸塊,再由黃光製程批次製作可精確定位的微球透鏡,改善光纖傳輸的耦合損失;在微致動器設計方面,首先以Ni/Fe金合包裹整個平面線圈,以有效的集中磁通量改善電磁出力不足之問題,並利用濺鍍及低溫回火技術沈積Fe/Pt厚膜永磁材料增加致動器的靈巧性。爾後由可定義圖層之感光性高分子材料作為晶片接合之介質層,以晶片對準與低溫接合技術完成垂直作動式之微光學開關。當以低能量雷射光束直接導入微光學開關中,在其反射端所測得的光能量強度有96.1%約是-0.25dB的損失,在通過端所測得的光能量至少有99%的強度以上;若先把雷射光束聚焦於光纖內,在反射輸出端仍有不錯的光能量強度,而在通過端所測得的光能量強度為70%,約為-1.55dB的損耗,對於薄膜彈性機構的工作頻率為1.8kHz,其工作次數為2´106次。
An innovative technology such as high power micro-electromagnetic actuator has been involved in this dissertation to fabricate a micro-optical switch. Precise substrate etching technique is also applied to form functional mesa in the silicon-based v-groove to enhance the fiber to optical switch coupling efficiency. On the other hand, micro-ball lens is developed through lithography method with precise alignment and configuration. It improves the coupling performance significantly. As to the design of microactuator, close loop of soft magnet, Ni/Fe 80/20, is used to concentrate the magnetic flux to compensate the shortage of the microactuator’s output force. Furthermore, hard magnet is sputtered with less than 300°C on the suspension diaphragm to reach the two-way actuation function, i.e., repulsive and attractive force that will increase the mobility of the microactuator. Patternable bonding technique with low bonding temperature and without electro field disturbance uses photosensitive polymer to define proper bonding pad to finish multi-substrate optical switch. Then, laser beam with low power density is coupled into the optical switch, 96.1% beam power is reflected with loss less than -0.25dB. If the laser beam is focused before coupling into fiber, the transmittance of laser beam through the micro ball lens is about 70 % with loss less than —1.55dB. The final test results show that switch frequency is larger than 1.8KHz; more thane 2´106 working cycle is found.
目 錄
中文摘要..........................i
英文摘要..........................ii
誌謝............................iii
目錄............................iv
圖目錄...........................vi
表目錄...........................xi
第一章 前言
1-1 背景..........................1-1
1-2 研究動機與目的.....................1-5
1-3 研究概要........................1-6
第二章 文獻回顧
2-1 開關機械結構......................2-1
2-2 驅動源種類.......................2-6
2-3 鏡片結構........................2-11
第三章 結構設計
3-1 上板設計........................3-3
3-2 致動元件........................3-9
3-2-1 封閉磁路設計.....................3-10
3-2-2 垂直場材料特性....................3-14
3-2-3 平面線圈設計分析與模擬................3-17
3-3 光纖耦合結構設計....................3-25
3-3-1 光纖耦合分析.....................3-25
3-3-2 V型槽內光纖定位裝置之設計..............3-34
3-4 晶片結合........................3-38
第四章 製程設計
4-1 上板製程
4-1-1 聚亞醯胺薄膜材料...................4-2
4-1-2 懸吊薄膜的製作....................4-3
4-1-3 準分子雷射加工....................4-11
4-1-4 SU-8厚膜光阻.....................4-15
4-1-5 微反射鏡面製作....................4-18
4-2 下板製程
4-2-1 光纖定位平台製作...................4-22
4-2-2 微球透鏡的製作技術..................4-23
4-2-3 平面線圈的製作....................4-29
4-3 晶片接合技術研究....................4-33
第五章 元件性能量測
5-1 即時量測系統......................5-1
5-1-1 訊號擷取與處理....................5-2
5-1-2 量測平台之建構....................5-4
5-2 磁場強度量測......................5-8
5-3 薄膜位移量測......................5-9
5-4 光學訊號量測......................5-13
第六章 結論與建議
6-1 結論..........................6-1
6-2 建議..........................6-2
參考文獻.........................參-1
作者介紹.........................作-1
附錄...........................附-1
參考文獻
[1] H. Fujita, “Microactuators and Micromachine,” in Proceedings of the IEEE, vol. 86, pp1721-1732, 1998.
[2] W. S. N. Trimmer, “Microrobots and Micromechanical System,” Sen. Actuators A, vol. 19, pp 267-287, 1989.
[3] R. Ramaswami, K. N. Sivarajan, “Optical network: A Practical Perspective,” Margan Kaufmam Publishers, Inc.
[4] B. D. Jensen, L. L Howell, and L. G. Salmon, “Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,” ASME Journal of Mechanical Design, vol. 121, pp. 416-423, 1999.
[5] K. E. Petersen, “Silicon Torsion Scanning Mirror,” IBM J. Res Develop., vol.24, pp.631, 1980.
[6] A. A. Yasseen, J. N. Mitchell, J. F. Klemic, and D. A. Smith, “A Rotary Electrostatic Micromotor 1´8 Optical Switch,” IEEE J. Microelectromech. Syst., vol. 5, pp.26-31, 1999.
[7] C. Marxer, C. Thio, M. A. Gretillat, and N. F. Rooij, “Vertical Mirror Fabricated by Deep Reactive Ion Etching for Fiber-Optical Switching Applications,” IEEE J. Microelectromech. Syst., vol. 6, pp.277-285, 1997.
[8] M. Hoffmann, P. Kopka, E. Voges, “Optical Fiber Switches Based on Full Wafer Silicon Micromachining,” J. Micromech. Microeng., vol. 9, pp.151-155, 1999.
[9] W. H. Juan, S. W. Pang, "High-Aspect-Ratio Si Vertical Micromirror Arrays for Optical Awitching," IEEE J. Microelectromech. Syst., vol. 7, pp.207-212, 1998.
[10] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “Free-Space Micromachined Optical Switch for Optical Networking,” IEEE J. Selected Topics in Quantum Electronics, vol. 5, pp.4-9, 1999.
[11] Y. W. Yi, C. Liu, "Magnetic Actuation of Hinged Microstructures," IEEE J. Microelectromech. Syst., vol. 8, pp.10-17, 1999.
[12] H. Toshiyoshi, H. Fujita, "Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix," IEEE J. Microelectromech. Syst., vol. 5, pp.231-237, 1996.
[13] H. Toshiyoshi, D. Miyauchi, H. Fujita, “Electromagnetic Torsion Mirrors for Self-Aligned Fiber-optic Crossconnectors by Silicon Micromachining,” IEEE J. Selected Topics in Quantum Electronics, vol. 5, pp.10-17, 1999.
[14] P Hoffmann, P.Kopka, and E. Voges, “All-Silicon Bistable Micromechanical Fiber Switch Based on Advanced Bulk Micromachining,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 46-51, 1999.
[15] R. T. Chen, H. Nguyen, and M. C. Wu, “A High-Speed Low-Voltage Stress-Induced Micromachined 2´2 Optical Switch,” IEEE Photonics Technology Letters, vol.11, pp.1396-1398, 1999.
[16] T. Matsuura, T. Fukami, M. Chabloz, Y. Sakai, S. I. Izuo, A. Uemura, S. I. Kaneko, K. Tsutsumi, and K. Hamanaka, “Silicon Micro Optical Switching Device with an Electromagnetically Operated Cantilever,” Sen. Actuators A, vol. 83, pp.220-224, 2000.
[17] K. Petersen, “Silicon as Mechanical Material,” in Proceedings of the IEEE, vol. 70, pp.420~457, 1982.
[18] S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors,” Journal of Lightwave Technology, vol. 17, pp.7-13, 1999.
[19] H. Toshiyoshi, W. Piyawattanametha, C.T Chan, and M. C. Wu, “Linearization of electrostatically actuated surface micromachined 2D optical switch scanner,” IEEE/ASME J. Microelectromech. Syst. vol 10, pp.263~269, 2001.
[20] Walter Bacher, Wolfgang Menz, and Jurgen Mohr, “The LIGA Technigue and Its Potential for Microsystems-A Survey,” IEEE Transactions on Industrial Electronics, vol. 42, 1995.
[21] Kenji Uchino, “Recent Trend of Piezoelectric Actuator Developments,” Solid-State Sens. Actuator Workshop, pp.19-21, 2000, Bremen, Germany.
[22] Wernwe Riethmulle and Wolfgang Benecke, “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Devices, vol. 35, 1988.
[23] N. R. Jankowski, C. Bobcowski, D. Zipkin, and R. R., “MEMS-Based Optic Switch Design for Reconfigurable, Fault-Tolerant Optical Backplanes,” IEEE The 6th International Conference Parallel Interconnects, (PI ''99) Proceedings, pp.149~156, 1999.
[24] Peter Krulevitch, Abraham P. Lee, Philip B. Ramsey, James C. Trevino, Julie Hamilton, Allen Northrup, “Thin Film Shape Memory Alloy Microactuators,” IEEE J. Microelectromech. Syst., vol. 5, 1996.
[25] E. Quandt, F. Claeyssen, “Magnetostrictive Materials and Actuators,” ACTUATOR 2000, 19-21 June 2000, Bremen, Germany.
[26] Olga Blum Spahm, Charles Sullivan, Jeff Burkhart, and Chris Tigges,”GaAs-based microelectromechanical waveguide switch,” Optical MEMS, IEEE/LEOS International Conference, pp.41 —42, 2000.
[27] Yoshinori Yokyama, Hitoshi Ota etc., “Micro-optical Switch With Uni-directional I/O Fibers,” in IEEE Proc. Workshop on Micro Electro Mechanical Syst. (MEMS00) Ernie Garcia Sandia USA, pp 479~484, 2000.
[28] H. Toshiyoshi, D. Miiyauchi, and H. Fujita, “Micormechanical Fiber Optic Switches based on electromagnetic Torsion Mirrors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. pp.10~17 1999.
[29] Y.-A.Peter, F . Gonte, H.-P. Herzig, R. Dandliker, “Optical fiber switch using a deformable mirror for a large number of interconnects,” Optical MEMS, IEEE/LEOS International Conference, pp. 76~77, 2000.
[30] Technology Review, 2000.
[31] http://www-hft.e-technik.uni-dortmund.de/uk/forschng/sil3.html
[32] Strnat, G. Hoffer, J. Olson and W. Ostertag “A Family of new Cobalt-Base Permanent Magnet Materials,” J. Appl. Phys., vol.38, pp.1001, 1967.
[33] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, “New Material for Permanent on a Base of Nd and Fe (invited),” J. Appl. Phys., Vol. 55, pp.2083~2091, 1984.
[34] A. Tuantranont, V. M. Bright, J. Zhang et al, “Optical beam steering using MEMS-controllable microlens array,” Sens. Actuators A, vol. 91, pp.363-372, 2001.
[35] S. Masuda, T. Iwama, “Low- loss lens connector for single-mode fibers,” Applied Optics, vol.21, pp.417-425, 1982.
[36] G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, vol. 86, pp1536-1551, 1998.
[37] A. Berthold, B. Jakoby, M. J.Vellekoop, “Wafer-to-wafer fusion bonding of oxidized silicon to silicon at low temperatures,” Sens. Actuators A, vol. 68, pp.410-413, 1998.
[38] Malay K. Ghosh and K. L. Mittal, “Polyimides Fundamentals and Application,” Marcel Dekker, Inc. New York, 1996.
[39] H. G. Rubahn, “Laser Applications in Surface Science and Technology,” John Wiley & Sons, Inc., New York, 1999.
[40] B. Bian, D. E. Laughlin, and K. Sato, “Fabrication and Nanostructure of Oriented FePt Particles,” J. Appl. Phys. vol. 87, pp.6962~6964, 2000.
[41] J. U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, “Perpendicular Magnetic Anisotropy and Magnetic Domain Structure in Sputtered Epitaxial FePt (001)L10 Films,” J. Appl. Phys. vol. 84, pp.5686~5692, 1998.
[42] Sheng-Chih Shen, Cheng-Tang Pan, Hwai-Pwu Chou, “Batch assembly micro ball lens array for Si-based optical coupling platform in free space,” OPTICAL REVIEW, vol.8, 2001.
[43] S.C. Shen, C.T. Pan, H.P. Chou, “A Batch Fabrication micro-ball array for optical coupling in free space communication,” IMECE2001, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Nov. 11-16, 2001, New York.
[44] S.C. Shen, C.T. Pan, M.C. Chou, H.P. Chou,“Electromagnetic Optical Switch for Optical Network Communication,” Journal of Magnetism and Magnetic Materials 2001.
[45] C.T. Pan, S.C. Shen, H.P. Chou, “Design and Fabrication of High Power Electromagnetic Microactuator with Perpendicular Magnetic Anisotropy,” IMECE2001, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Nov. 11-16, 2001, New York.
[46] 沈聖智、潘正堂、周懷樸、周敏傑 “晶圓局部接合技術應用於微機電系統之研究”,科儀新知,第二十二卷,第六期,第49-53頁,90年6月。
[47] Anders Hanneborg, Martin Nese and Per Ohlckers, “Silicon-to-silicon Anodic Bonding with Borosilicate Glass Layer,” J. Micromech. Microeng, pp.139-144, 1991.
[48] Philip W. Barth, “Silicon fusion for fabrication of sensor, actuators and microstructures,” Sens. Actuators A, vol. 21, pp. 919-926, 1990.
[49] G. Krauter, A. Schumacher, U. Gosele, “Low temperature silicon direct bonding for application in micromechanics: bonding energies combinations of oxides,” Sens. Actuators A, vol. 70, pp.271-275, 1998.
[50] R.F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond,” Sens. Actuators A, vol. 62, pp.680-686, 1997.
[51] C. Besten, R. E. G Hal, J. Munoz, P. Bergveld, “Polymer bonding of micro-machined silicon structures,” in IEEE Proc. Workshop on Micro Electro Mechanical Syst. (MEMS’92), Travemunde Germany, pp.104-109, 1992.
[52] H. J. Quenzer, W. Benecke, “Low-temperature silicon wafer bonding,” Sens. Actuators A, vol. 32, pp.340-344, 1992.
[53] M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, “Silicon-to-Silicon direct bonding method,” J. Appl. Phys., vol.60, pp.2987-2989, 1986.
[54] F. Niklaus, P. Enoksson, E. Kalvesten, G. Stemme, “Vold-free full wafer adhesive bonding,” in Proceedings of the IEEE, pp.106-113, 2000.
[55] P. D. Bear, “Microlenses for coupling single-mode fibers to single-mode thin-film waveguides”, Applied Optics, vol.19, pp. 157-159, 1980.
[56] A. Tuantranont, V. M. Bright, J. Zhang et al, “Optical beam steering using MEMS-controllable microlens array,” Sens. Actuators A, vol.91, pp.363-372, 2001.
[57] S. Masuda, T. Iwama, “Low- loss lens connector for single-mode fibers”, Applied Optics, vol.21, pp. 417-425, 1982.
[58] A. Feustel, O. Krusemark, J. Muller, “Numerical Simulation and Optimiz-ation of Planar Electromagnetic Actuators,” Sens. Actuators A, vol.70, pp.276-28, 1998.
[59] M. Klopzig, “A Novel Linear Micromachined Electromagnetic Actuator Including Magnetic Suspension,” Actuator 98, 6th International Conference on New Actuators, pp.588-593, June 17-19 1998, Bremen, Germany.
[60] W. P. Tayler, O. Brand, and M. G. Allen, “Fully Integrated Magnetically Actuated Micromachined Relays,” IEEE J. Microelectromech. Syst., vol. 40, pp.181-191, 1998.
[61] Jiroshi Hosaka, Hiroki Kuwano and Keiichi Yanagisawa, “Electromagne-tic Microrelays: Concepts and Fundamental Characteristics,” Sens. Actuators A, vol.40, pp.41-47, 1994.
[62] H. Torri, M. Sasaki, K. Hane and S. Okuma, “Fabrication of Micromechanical Devices from Polysilicon Films with Smooth Surfaces,” Sens. Actuators A, vol.20, pp.117-122, 1989.
[63] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical System,” in Proceedings of the IEEE, vol. 86, pp1552-1574, 1998.
[64] Y. C. Tai, et al, “IC Processed Electrostatic Synchronous Micromotors,” Sens. Actuators A, vol. 20, pp.49-56, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top