跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍永強
研究生(外文):Yung-Chiang Lan
論文名稱:真空三極體結構研究-從場發射真空微三極體到反射式三極體之虛陰極振盪器
論文名稱(外文):Study of vacuum triodes:from field emission microtriodes to virtual cathode oscillators
指導教授:胡瑗胡瑗引用關係林滄浪
指導教授(外文):Yuan HuTsang-Lang Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:186
中文關鍵詞:場發射真空微三極體虛陰極振盪器粒子式電腦模擬梯狀導波管系統等效線路模型奇異值分解型牛頓法反射式奈米碳管場發射顯示器
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
場發射真空微三極體(field emission microtriode)與虛陰極振盪器(virtual cathode oscillator,vircator)都是真空三極體式元件﹔前者為固態微電子元件,由發射極、閘極與陽極構成,發射極以場發射方式發射電子﹔後者則利用空間電荷效應,當所發射之高強度瞬間電子束電流超過漂移管之空間電荷極限電流時,在漂移管內將會形成虛陰極,此虛陰極會呈週期性的振盪,而且電子也會在陰極與虛陰極間來回反射振盪,電子在陰極與虛陰極間來回反射振盪與虛陰極本身隨時間與空間的振盪產生高功率脈衝式微波。研究顯示微三極體的幾何結構會影響其特性,如改變場發射真空微三極體的幾何結構會影響電子軌跡、發射電流大小以及場發射平面顯示器的解析度﹔而適當改變虛陰極振盪器漂移管之結構,可以提昇虛陰極振盪器輸出微波的功率。本論文將深入探討真空三極體之設計結構對其特性的影響。
本論文首先對場發射真空微三極體進行模擬與分析研究,我們以粒子式(particle-in-cell,PIC)電腦模擬程式MAGIC code為工具,分別探討具有共軸式、共平面式、脊式與網狀電極式聚焦電極結構之Spindt型微三極體的電子束聚焦效果,以評估何種設計最適合於場發射顯示器使用﹔其次研究新型設計具有火山口形發射極的真空微三極體的電子束發射特性﹔以及研究新型設計之反射式奈米碳管場發射顯示器(reflective-type carbon nanotube field emission display)的最佳設計及操作條件。我們的研究結果顯示共平面式聚焦電極結構是最適合於Spindt型微三極體場發射顯示器,具有最佳之電子束聚焦效果,可增進顯示器解析度﹔具火山口形發射極微三極體的新式設計,研究發現發射極頂端邊緣上若有微突起則可大幅增加發射電流﹔而反射式奈米碳管場發射顯示器的研究顯示上方ITO電極的負電位對顯示器解析度有很大的影響,其作用主要來自於對電子的排斥作用,顯示器要有良好的解析度,上方ITO電極必須操作在比發射極低的電位,以使電子能反射回陽極區域,並且只能打到發射極最鄰近的陽極板螢光材料上。
其次我們以本系電漿模擬實驗室所自行發展的粒子式、二又二分之一維、電磁模式且符合相對論運動之電腦模擬程式,研究具有梯狀導波管之虛陰極振盪器,實驗顯示此種具梯狀導波管虛陰極振盪器在某些特定之陽極至導波管管徑改變處的距離(梯狀長度)時,其微波輸出功率會增加,利用電腦模擬可以深入了解其成因。本研究所模擬的虛陰極振盪器參數設定陰極電壓負270仟伏,陽極與導波管接地,陰極發射電流為7300安培,陰陽極間距離為0.46公分,陰極半徑為1.3公分,導波管前段管徑為4公分,導波管後段管徑為5公分。本論文之研究結果發現,具有梯狀導波管的虛陰極振盪器,在特定之梯狀長度時,的確可以增加微波產生的功率,同時振盪主頻也會隨著梯狀長度的改變而漂移。經由開放式共振腔時域模型的分析顯示,上述現象與梯狀導波管形成開放式共振腔有密切關係。同時我們也建立含有電流源之梯狀導波管系統的等效線路模型進行詳細理論分析,在等效線路模型中假設梯狀導波管內的電流源是來自於導波管內虛陰極區電荷分佈的同步振盪,所用之空間電荷分佈使用電腦模擬所得到的結果,分析時我們使用奇異值分解型(singular-value decomposition,SVD)牛頓法求解梯狀導波管系統的共振頻率。由等效線路模型與電腦模擬結果的比較得知,造成梯狀導波管虛陰極振盪器微波功率增加與振盪主頻漂移的原因,是由於梯狀導波管所形成的開放式共振腔系統與虛陰極振盪器自然振盪頻帶共同作用的結果。

目 錄
摘要…………………………………………………………… i
誌謝…………………………………………………………… iii
目錄…………………………………………………………… iv
圖目錄…………………………………………………………… vii
表目錄…………………………………………………………… xiv
第一章 緒論…………………………………………………… 1
1-1 研究目的………………………………………… 1
1-2 場發射微三極體簡介 …………………………… 2
1-3 虛陰極振盪器簡介 …………………………… 10
1-4 本論文架構 …………………………………… 18
第二章 場發射微三極體之模擬研究與分析……………… 20
2-1 場發射微三極體之發展歷史與文獻回顧 …… 20
2-2 場發射微三極體之模擬方法 ………………… 24
2-3 具有聚焦電極結構Spindt型微三極體之模擬與分析
………………………………………………… 26
2-3-1 模擬元件之幾何結構…………… 26
2-3-2 模擬結果與分析 ……………………… 28
2-4 火山形發射極微三極體之模擬與分析………… 51
2-4-1 火山形發射極微三極體之幾何結構 …… 51
2-4-2 火山形發射極微三極體之模擬結果與分析 53
2-5 反射式奈米碳管場發射顯示器之模擬與分析 … 65
2-5-1 反射式奈米碳管場發射顯示器之幾何結構
與模擬模型 ……………………………… 65
2-5-2 反射式奈米碳管場發射顯示器模擬結果與分析 68
第三章 虛陰極振盪器的模擬研究與分析…………………… 79
3-1 虛陰極振盪器研究之歷史與文獻回顧………… 79
3-2 虛陰極振盪器之電腦模擬方法 ……………… 83
3-2-1 粒子式模擬方法 ……………………… 83
3-2-2 靜電場的解法 …………………………… 85
3-2-3 二維電磁場的解法……………………… 87
3-2-4 粒子運動方程式的數值解法 ………… 90
3-2-5 符合連續方程式的電流計算方式 …… 91
3-2-6 面積加權法 …………………………… 92
3-2-7 時間差與格網大小的限制 ……………… 93
3-2-8 微波的模式與功率計算方法 ………… 94
3-3 開放式共振腔的共振頻率分析 ……………… 95
3-4 虛陰極振盪器模擬模型與參數 ……………… 99
3-5 虛陰極振盪器模擬結果與分析 ……………… 101
3-5-1 直管虛陰極振盪器模擬結果 ………… 101
3-5-2 梯狀導波管虛陰極振盪器模擬結果 …… 101
第四章 梯狀導波管系統之等效線路模型與分析 ………… 118
4-1 開放式共振腔與特徵值問題之文獻回顧 …… 118
4-2 無電流源開放式共振腔之等效線路模型 …… 119
4-2-1 圓柱形導波管內電磁場之正則模式 …… 119
4-2-2 導波管中之等效電壓與等效電流 …… 124
4-2-3 導波管管徑突然變化處之等效線路模型 125
4-2-4 開放式共振腔的等效線路模型 ………… 129
4-3 有電流源開放式共振腔之等效線路模型 …… 134
4-3-1 共振器方程式之建立 ………………… 134
4-3-2 有源梯狀導波管共振腔內電流密度與電場之關係 136
4-3-3 有源梯狀導波管共振腔特徵值方程式之建立 138
4-4 無電流源開放式共振腔等效線路模型分析結果 142
4-5 有電流源開放式共振腔等效線路模型分析結果 144
第五章 結論 …………………………………………… 167
參考文獻 ……………………………………………………… 170
附錄 ……………………………………………………… 177

[1] S. Iannazzo, Solid-State Electronics vol. 36, 301, 1993.
[2] C. A. Spindt, J. Appl. Phys. vol. 39, p. 3504, 1968.
[3] 王文俊, 場發射顯示系統, 平面顯示器研討會, 國立清華大學, 民國八十六年八月五~六日。
[4] J. A. Nation, L. Schachter, F. M. Mako, L. K. Len, W. Peter, C. M. Tang, and T. Srinivasan-Rao, Proceeding IEEE vol. 87, p. 865, 1999.
[5] R. H. Fowler and I. W. Nordheim, Proc. Roy. Soc. vol. A 119, p. 173, 1928.
[6] B. Goplen, L. Ludeking, D. Smithe and G. Warren, MAGIC User’s Manual, Mission Research Corp., MRC/WDC-R-409, 1997.
[7] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, IEEE Trans. Electron Devices vol. ED-36, p.225, 1989.
[8] http://www.pixtech.com
[9] D. R. Whaley, B. M. Gannon, C. R. Smith, C. M. Armstrong, and C. A. Spindt, IEEE Trans. Plasma Sci. vol. 28, p. 727, 2000.
[10] M. A. Kodis, K. L. Jensen, E. G. Zaidman, B. Goplen, and D. N. Smithe, IEEE Trans. Plasma Sci. vol. 24, p. 970, 1996.
[11] H. G. Kosmahl, IEEE Trans. Electron Device vol. 36, p. 2728, 1989.
[12] http://www.candescent.com/Candescent/default.htm
[13] Y. C. Lan, J. T. Lai, S. H. Chen, W. C. Wang, C. H. Tsai, K. L. Tsai, and C. Y. Sheu, J. Vac. Sci. Technol. B vol. 18, p. 911, 2000.
[14] W. B. Herrmannsfeldt, R. Becker, I. Brodie, A. Rosengreen and C. A. Spindt, Nucl. Instrum. & Methods Phys. Res. A vol. 298, p. 39, 1990.
[15] R. M. Mobley and J. E. Boers, IEEE Trans. Electron Devices vol. 38, p. 2383, 1991.
[16] W. D. Kesling and C. E. Hunt, IEEE Trans. Electron Devices vol. 42, p. 340, 1995.
[17] C. M. Tang, T. A. Swyden and A. C. Tin, J. Vac. Sci. Technol. B vol. 13, p. 571, 1995.
[18] U.S. Patent No. 5528103 (1996).
[19] U.S. Patent No. 5508584 (1996).
[20] J. E. Pogemiller, H. H. Busta, and B. J. Zimmerman, J. Vac. Sci. Technol. B vol. 12, p. 680, 1994.
[21] T. T. Ku, M. S. Chen, C. C. Wang, M. S. Feng, I. J. Hsieh, C. M. Huang, and H. C. Cheng, Jpn. J. Appl. Phys. vol. 34, p. 5789, 1995.
[22] M. Urayama, T. Ise, Y. Maruo, A. Kishi, R. Imamoto, and T. Takase, Jpn. J. Appl. Phys. vol. 32, p. 6293, 1993.
[23] S. H. Yang and M. Yokoyama, presented at the 1996 International Electron Devices and Materials Symposia, Hsinchu, Taiwan, December 16-20, 1996.
[24] S. Iijima, Nature vol. 354, p. 56, 1991.
[25] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science vol. 269, p. 1550, 1995.
[26] W. A. deHerr, A. Chatelain, and D. Ugarte, Science vol. 270, p. 1179, 1995.
[27] P. G. Collins and A. Zettl, Phys. Rev. B vol. 55, p. 9391, 1997.
[28] S. Fan, W. Liang, H. Dang, N. Franklin, T. Tombler, M. Chapline, and H. Dai, Physica E vol. 8, p. 179, 2000.
[29] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, Appl. Phys. Lett. vol. 70, p. 3308, 1997.
[30] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett. vol. 76, p. 3813, 2000.
[31] F. Y. Chuang, C. C. Lee, J. D. Lin, J. H. Liao, H. C. Cheng, C. C. Han, W. C. Wang, SID2000 digest 22.3, 2000.
[32] V. L. Granatstein and I. Alexeff, High-Power Microwave Source, Artech House, Inc., Norwood, MA, 1987.
[33] J. Benford and J. Swegle, High-Power Microwaves, Artech House, Inc., Norwood, MA, 1992.
[34] R. D. Scarpetti and S. C. Burkhart, IEEE Trans. Plasma Sci. vol. PS-13, p. 506, 1985.
[35] M. W. Wu, P. S. Song, C. Y. Chen, M. J. Yang, K. N. Tung, and W. S. Hou, 7th Int. Conference on High-Power Particle Beams, Karlsruhe, Germany, July 4-8, 1988.
[36] M. V. Fazio, J. Kinross-Wright, B. Haynes, and R. F. Hoeberling, J. Appl. Phys. vol. 66, p. 2675, 1989.
[37] D. Price, H. Sze, and D. Fittinghoff, J. Appl. Phys. vol. 65, p. 5185, 1989.
[38] M. V. Fazio, R. F. Hoeberling, and J. Kinross-Wright, J. Appl. Phys. vol. 65, p. 1321, 1989.
[39] N. A. Nikolov, K. G. Kostov, I. P. Spasovsky, and V. A. Spasov, Electronics Lett. vol. 24, p. 1445, 1988.
[40] D. Price, D. Fittinghoff, J. Benford, H. Sze, and W. Woo, IEEE Trans. Plasma Sci. vol. 16, p. 177, 1988.
[41] H. A. Davis, R. R. Bartsch, T. J. T. Kwan, E. G. Sherwood, and R. M. Stringfield, IEEE Trans. Plasma Sci. vol. 16, p. 192, 1988.
[42] H. A. Davis, R. R. Bartsch, T. J. T. Kwan, E. G. Sherwood, and R. M. Stringfield, Phys. Rev. Lett. vol. 59, p. 288, 1987.
[43] S. Burkhart, J. Appl. Phys. vol. 62, p. 75, 1987.
[44] J. Benford, H. Sze, W. Woo, and B. Harteneck, Phys. Rev. Lett. vol. 56, p. 344, 1986.
[45] H. Sze, J. Benford, W. Woo, and B. Harteneck, Phys. Fluids vol. 29, p. 3873, 1986.
[46] H. Sze, J. Benford, T. Young, D. Bromley, and B. Harteneck, IEEE Trans. Plasma Sci. vol. PS-13, p. 492, 1985.
[47] D. J. Sullivan, IEEE Trans. Nucl. Sci. vol. NS-30, p. 3426, 1983.
[48] J. Benford, D. Price, H. Sze, and D. Bromley, J. Appl. Phys. vol. 61, p. 2098, 1987.
[49] M. Yatsuzuka, Y. Hashimoto, M. Sato, I. Ohta, T. Kaneko, S. Nobuhara, and T. Tazima, J. Phys. Soc. Japan vol. 60, p. 352, 1991.
[50] C. S. Hwang, M. W. Wu, P. S. Song, and W. S. Hou, J. Appl. Phys. vol. 69, p. 1247, 1991.
[51] H. Hanjo, and Y. Nakagawa, J. Appl. Phys. vol. 70, p. 1004, 1991.
[52] M. W. Wu, T. C. Guung, C. Y. Chen, C. S. Hwang, 8th IEEE Int. Pulsed Power Conference, San Diego, June 16-19, 1991.
[53] T. L. Lin, W. T. Chen, W. C. Liu, Y. Hu, and M. W. Wu, J. Appl. Phys. vol. 68, p. 2038, 1990.
[54] A. L. Peratt, C. M. Snell, and L. E. Thode, IEEE Trans. Plasma Sci. vol. PS-13, p. 498, 1985.
[55] L. S. Bogdankevich and A. A. Rukhadze, Sov. Phys. USPEKHI vol. 14, 163, 1971.
[56] R. B. Miller, An introduction to the physics of intense charged particle beams, Plenum, New York, 1982.
[57] W. Jiang, K. Woolverton, J. Dickens, and M. Kristiansen, IEEE Trans. Plasma Sci. vol. PS-27, p. 1538, 1999.
[58] W. Y. Woo, Phys. Fluids vol. 30, p. 239, 1987.
[59] R. F. Hoeberling and M. V. Fazio, IEEE Trans. Electromagnetic Compatibility vol. 34, p. 252, 1992.
[60] K. R. Shoulders, Adv. Computer vol. 2, p. 135, 1961.
[61] W. A. Mackie, R. L. Hartman, and P. R. Davis, Appl. Surface Sci. vol. 67, p. 29, 1993.
[62] M. Endo, H. Nakane, and H. Adachi, J. Vac. Sci. Technol. B. vol. 14, p. 2114, 1996.
[63] E. C. Boswell, M. Huang, G. D. W. Smith, and P. R. Wilshaw, J. Vac. Sci. Technol. B. vol. 14, p. 1895, 1996.
[64] L. N. Yadon, D. Temple, W. D. Palmer, C. A. Ball, G. E. Mcguire, C. M. Tang, and T. A. Swyden, J. Vac. Sci. Technol. B. vol. 13, p. 580, 1995.
[65] A. I. Akinwande, P. E. Bauhahn, H. F. Gray, T. R. Ohstein, and J. O. Holmen, IEDM Tech. Dig, p. 367, 1992.
[66] M. W. Geis, J. A. Gregory, and B. B. Pate, IEEE Trans. Electron Devices vol, 38, p. 619, 1991.
[67] C. Wang, A. Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, Electron. Lett. vol. 27, p. 1459, 1991.
[68] K. H. Park, K. M. Lee, S. Choi, S. Lee, and K. H. Kon, J. Vac. Sci. Technol. B vol. 19, p. 946, 2001.
[69] C. Gu, X. Giang, Z. Jin, and W. Wang, J. Vac. Sci. Technol. B vol. 19, p. 962, 2001.
[70] R. Meyer, A. Ghis, P. Rambaud, and F. Muller, Proc. 6th Int. Display Research Conf., SID p. 512, 1986.
[71] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, IEEE Trans. Electron Devices vol. 36, p. 225, 1989.
[72] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim: Appl. Phys. Lett. vol. 75, p. 3129, 1999.
[73] E. G. Zaidman, IEEE Trans. Electron Devices vol. 40, p. 1009, 1993.
[74] T. K. Ku, M. S. Chen, C. C. Wang, M. S. Feng, L. J. Hsieh, C. M. Huang, and H. C. Cheng, Jpn. J. Appl. Vol. 35, p.5789, 1995.
[75] R. L. Hartman, W. A. Mackie, and P. R. Davis, J. Vac. Sci. Technol. B vol. 12, p. 754, 1994.
[76] Y. J. Yang, F. T. Korsmeyer, V. Rabinovich, M. Ding, S. D. Senturia, and A. I. Akinwande, IEDM 98, p. 863, 1998.
[77] W. A. Anderson, J. Vac. Sci. Technol. B vol. 11, p. 383, 1993.
[78] G. N. A. van Veen, J. Vac. Sci. Technol. B vol. 12, p. 655, 1994.
[79] Y. Y. Lau and Y. Liu, Phys. Plasma vol. 1, p. 2082, 1994.
[80] K. L. Jensen, M. A. Kodis, R. A. Murphy, E. G. Zaidmain, J. Appl. Phys. vol. 82, p. 845, 1997.
[81] V. H. Barkhausen and K. Kurz, Phys. Z. vol. 21, p. 1, 1920.
[82] R. A. Mathaffey, P. Sprangle, J. Golden, and C. A. Kapetanakos, Phys. Rev. Lett. vol. 39, p. 843, 1977.
[83] R. J. Lomax, Proc. IEE vol. 108, Part C, p. 119, 1961.
[84] E. A. Coutsias and D. J. Sullivan, Phys. Rev. A vol. 27, p. 1535, 1983.
[85] H. R. Jory, A. W. Trivelpiece, J. Appl. Phys. vol. 40, p. 3924, 1969.
[86] H. W. Chan and R. C. Davidson, J. Appl. Phys. vol. 61, p. 2152, 1987.
[87] A. Kadish, IEEE Trans. Plasma Sci. vol. PS-13, p. 188, 1985.
[88] A. Kadish, R. J. Faehl, C. M. Snell, Phys. Fluids vol. 29, p. 4192, 1986.
[89] G. Yu, W. Wang, Y. Wei, and S. Liu, Int. J. Infra. Milli. Waves vol. 17, p. 1219, 1996.
[90] C. K. Birdsall and W. Bridges, J. Appl. Phys. vol. 32, p. 2611, 1961.
[91] W. Bridges and C. K. Birdsall, J. Appl. Phys. vol. 34, p. 2946, 1963.
[92] T. J. T. Kwan, Phys. Fluids vol. 27, p. 228, 1984.
[93] T. J. T. Kwan and L. E. Thode, Phys. Fluids vol. 27, p. 1570, 1984.
[94] J. J. Ambrosiano and J. L. Geary, Computer Phys. Comm. vol. 67, p. 210, 1991.
[95] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
[96] I. B. Bernstein, L. K. Divringi, and T. M. Smith, Int. J. Infra. Milli. Waves vol. 4, p.57, 1983.
[97] J. J. Barroso, A. Montes, and G. O. Ludwig, Int. J. Electronics vol. 61, p. 771, 1986.
[98] K. R. Chu, C. S. Kou, J. M. Chen, Y. C. Tsai, C. Cheng, S. S. Bor, and L. H. Chang, Int. J. Infra. Milli. Waves vol. 13, p. 1571, 1992.
[99] E. Borie and O. Dumbrajs, Int. J. Electronics vol. 60, p. 143, 1986.
[100] E. Jensen and K. Schunemann, Int. J. Infra. Milli. Waves vol. 12, p. 1275, 1991.
[101] F. Sporleder and H. G. Unger, Waveguide tapers transition and couplers, Peter Peregrinus Ltd., London, 1979.
[102] S. D. Conte and C. deBoor, Elementary numerical analysis, 3rd ed., McGraw-Hill, New York, 1980.
[103] J. S. Guo, W. W. Lin, and C. S. Wang, LINEAR ALGEBRA APPL vol. 231, p. 15, DEC. 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top