跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡竹青
研究生(外文):Chu-Ching Tsai
論文名稱:氮化銦鎵多層量子阱結構的X光繞射解析與熱處理效應研究
論文名稱(外文):X-Ray Diffraction Characterization of the Thermal Annealing Effects on InxGa1-xN-GaN MQWs
指導教授:洪雪行黃嘉宏黃嘉宏引用關係
指導教授(外文):Hsueh-Hsing HungProf. Jia-Hong Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:76
中文關鍵詞:氮化銦鎵多層量子阱X光繞射解析熱處理效應研究
外文關鍵詞:InGaN-GaN MQWsx-ray diffractionthermal anneal effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用X光繞射,鑑定氮化銦鎵-氮化鎵多層量子阱的結構,並從界面結構的觀點,研究高溫退火後發光藍位移的熱處理效應。樣品的(10.3)繞射峰形顯示,氮化銦鎵薄層即使加熱到1000°C,界面仍然維持晶格匹配完全契合的壓縮應變狀態。
量子阱各層的平均厚度及質量密度,由(00.2)和(00.4)繞射的圖譜決定。其中,經由X光動力繞射理論的數據擬合及彈性力學應變量修正式的代數計算,確認氮化銦鎵薄層中銦的莫爾含量為0.17(±0.01)。現有文獻對於氮化銦鎵多層量子阱中銦的含量以及引申的光電性質等探討,多基於磊晶製程的操作值;但此一名義上的預估量是校正自晶格鬆弛後的氮化銦鎵厚膜,過度高估薄層實際的銦含量,因而滋生眾說紛紜的不同詮釋或臆測。
我們在(00.2)面第零階超晶格反射峰2q-q 的網狀掃描,觀察到散射強度的分佈隨退火溫度的升高,出現漫延至氮化鎵(00.2)繞射峰的非對稱性趨勢,繼而分離出成新的次一反射峰。這意味著1000°C加熱後的樣品出現兩種不同銦含量的組成。再檢測介面趨向平整化的X光反射率數據,以及裂成兩個峰的光致發光光譜,我們提出:界面應變導致氮化銦鎵擴散層的熱處理效應。
從光電性質的觀點,高溫退火造成光致發光與X光激發光譜都呈現的藍位移與峰寬減半,除了原有的量子阱能隙,我們認為粗糙界面是形成另一較大能隙的重要因素。在完全契合的界面應變作用下,熱活化促進銦離子與鎵離子在粗糙界面的交互擴散,進而出現低含量的氮化銦鎵界面擴散層。如果樣品持續做適宜的高溫退火熱處理,擴散層將逐漸形成明確的界面,產生量子阱的次能隙結構。

We apply X-ray diffraction to characterize the structure of InxGa1-xN-GaN MQWs and study the effect of thermal-annealing from the structural point of view. Surface-normal (00.2) and (00.4) diffraction profiles were collected and analyzed by numerically fitting with the dynamical theory of X-ray diffraction. In our sample system, the measured value of molar fraction x of indium composition in InxGa1-xN layers is 0.17 (±0.01), which has been verified by solving a modified relation of elasticity, given by us for the first time, valid to the strained InxGa1-xN-GaN bilayer.
According to mesh scans around the zeroth-order of (00.2) super-lattice reflection of sample at different post-annealing temperatures, we observed an asymmetric tendency of the diffraction contours evolving to two peaks. This observation implies that two distinct values of indium composition are well separated in the 1000°C-annealed MQWs sample. The proposed interpretation was supported by X-ray reflectivity data and consistent with the splitting of emission peak shown in the PL spectrum.
From the photoelectronic point of view, according to the blue shift and varying of FWHM observed in PL and XEOL spectra, we indicate that the interface roughness is an important factor in the formation of an extra and larger bandgap in addition to the ordinary bandgap of quantum wells. Thermal activation initiated the interdiffusion of In and Ga ions at rough interfaces. High-temperature annealing would promote the inter-diffuse process and then diffusion layers at interface were gradually formed. Sharper interfaces were achievable if sample annealed further at high temperatures; even though, fully coherent strains were still remained in the 1000°C-annealed sample. The compositional variation at interface turned out to be a certain subband layer of quantum wells, because the as-grown roughness transformed into smooth diffusion layers by annealing.

Abstract (in Chinese) ….…………………………………….… i
Abstract …………….….…………………………………..….. ii
Acknowledgement ..………………………………………….. iii
Table of Contents …..……………..………………………….. iv
List of Figures …….…...………………………………….….. vi
List of Tables …….…...…….……………………………..….. x
Chapter 1 - Introduction
1-1 Research Motivation ……………………...…………..…... 1
1-2 Literature Survey ……………………………………….… 4
1-3 Brief of Contents ……………...………………….……... 14
Chapter 2 - Conceptual Background
2-1 X-ray Diffraction (XRD) ………………..…………..….. 16
2-1-1 q Rocking Scan …………….……...……...……...... 18
2-1-2 2q -q Radial Scan ……….….……...………………. 19
2-2 X-ray Reflectivity (XRR) .…………………………...…. 21
2-3 Photoluminescence (PL) ………………………………… 22
2-4 X-ray Excited Optical Luminescence (XEOL) ..…….… 24
Chapter 3 - Experimental Details
3-1 Sample Preparation:InxGa1-xN-GaN MQWs …..….…... 25
3-2 XRD and XRR Detection System ……………………... 27
3-3 PL Detection System …………………….……………… 30
3-4 XEOL Detection System ………….………………….…. 32
3-5 AFM Detection System ………….………………….…... 33
Chapter 4 - Experimental Results
4-1 Structural Characterization of InxGa1-xN-GaN MQWs under
Different Thermal Annealing Treatment
4-1-1 Whether Phase Separates or Not? ………....……. 35
4-1-2 Coherently Strained or Partially Relaxed? ……... 37
4-1-3 Thickness of the Active Layer ...…………..……... 39
4-1-4 What is the Value of x, not only the nominal? ... 54
4-1-5 XRR Result and AFM Images ………………..….. 62
4-2 Optical Luminescence of InxGa1-xN-GaN MQWs under
Different Thermal Annealing Treatment
4-2-1 Interpretation of the PL Spectra .………………… 65
4-2-2 XEOL Spectra of the 1000°C-Annealed Sample … 68
Chapter 5 - Discussion and Conclusions ……...………… 72
References ………………………………………..………………… 74

1. 丁勝懋, "雷射工程導論" [中央圖書出版社], p.276 (1998).
2. S. Nakamura, S. Pearton, and G. Fasol, "The blue laser diode : the complete story", (2000).
3. S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Appl. Phys. Lett. 70, 2753 (1997).
4. S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugymoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998); 73 832 (1998).
5. P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lambert, and R. D. Dupuis, Appl. Phys. Lett. 71, 1537 (1997).
6. S. Keller, B. P. Keller, D. Kapolnek, A. C. Abare, H. Masui, L. A. Coldren, U. K. Mishra, and S. P. Den Baars, Appl. Phys. Lett. 68, 3147 (1996).
7. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, Appl. Phys. Lett. 80, 3913 (2002).
8. M. G. Cheong, E.-K. Suh, and H. J. Lee, Semicind. Sci. Technol. 16, 783 (2001).
9. Y. Narukawa, Y. Kawakami, M. Funato, S. Fuijta, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
10. N. A. Shapiro, P. Perlin, C. Kisielowski, L. S. Mattos, J. W. Yang, and E. R. Weber, MRS Internet J. Niteide Semicond. Res. 5, 1 (2000).
11. I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (2001).
12. Toshio Saito and Yasuhiko Arakawa, Phys. Rev. B 60, 1701 (1999).
13. N. A. EI-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998).
14. D. Doppalapudi, S. N. Basu, K. F. Ludwig, Jr., and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998).
15. M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, Appl. Phys. Lett. 72, 1730 (1997).
16. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 692 (1998).
17. L. T. Romano, B. S. krusor, and R. J. Molnar, Appl. Phys. Lett. 71, 2283 (1997).
18. Chang-Cheng Chuo, Chia-Ming Lee, and Jen-Inn Chyi, Appl. Phys. Lett. 78, 314 (2001).
19. M. D. McCluskey, L. T. Romano, B. S. Krusor, and N. M. Johnson, Appl. Phys. Lett. 73, 1281 (1998).
20. D. K. Bowen and B. K. Tanner, "High Resolution X-ray Diffraction and Topography", Taylor and Francis, London, (1997).
21. 汪建民, "材料分析" [中國材料科學學會], pp.83-90 (1998).
22. C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73, 1994 (1998).
23. T. K. Sham, D. T. Jiang, I. Coulthard, J. W. Lorimer, X. H. Feng, K. H. Tan, S. P. Frigo, R. A. Rosenberg, D. C. Houghton, & B. Bryskiewicz, Nature 363, 331 (1993).
24. K. P. O’Donnell, J. F. W. Mosselmans, R. W. Martin, S. Pereira, and M. E. White, J. Phys.: Condens. Matter 13, 6977-6991 (2001).
25. S. Pereira, M. R. Correia, E. Pereira, K. P. O’Donnell, E. Alves, A. D. Sequeira, and N. Franco, Appl. Phys. Lett. 79, 1432 (2001).
26. T. Detechprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Jap. J. Appl. Phys., Part 2 31, L 1454 (1992).
27. W. Paszkowicz, Powder Diffr. 14, 258 (1992).
28. S. Stepanov, W. N. Wang, B. S. Yavich, V. Bougrov, Y. T. Rebane, and Y. G. Shreter, MRS Internet J. Nitride Semicond. Res. 6, 6 (2001).
29. Chang-Cheng Chuo, Mao Nan Chang, Fu-Ming Pan, Chia-Ming Lee, and Jen-Inn Chyi, Appl. Phys. Lett. 80, 1138 (2002).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文