跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉建偉
研究生(外文):Kiang-Wee Lau
論文名稱:非平衡磁控濺鍍製程中氮氣流量對奈米晶氮化鈦薄膜之結構及性質之影響研究
論文名稱(外文):Effect of nitrogen flow rate on the structure and properties of nanocrystalline TiN thin film deposited by unbalanced magnetron sputtering
指導教授:黃嘉宏黃嘉宏引用關係喻冀平
指導教授(外文):Jia-Hong HuangGe-Ping Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:98
中文關鍵詞:非平衡磁控濺鍍奈米晶氮化鈦氮氣流量晶粒大小優選方向硬度電阻率
外文關鍵詞:unbalanced magnetron sputteringnanocrystalline TiNnitrogen flow rategrain sizepreferred orientationhardnessresistivity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是利用非平衡式磁控濺鍍法鍍著奈米晶氮化鈦薄膜於(100)矽晶片上,改變氮氣流量(最大流量為5 sccm,控制從0.25至1.75 sccm)對氮化鈦薄膜之成分、結構、性質的研究。以X光繞射法來決定薄膜的晶粒大小,其結果小於7 nm。從AFM和SEM的結果也顯示氮化鈦薄膜晶粒為奈米級。薄膜氮鈦的比率(N/Ti ratio)隨氮氣流量從0.4改變至1.1。氮化鈦薄膜的優選方向隨氣流量增加,先從(111)改變至(200),最後形成(111)優選方向。隨著(111)與(200)優選方向之間的變化,薄膜的硬度值並沒有太大改變。對於200 nm厚度的氮化鈦薄膜,高殘留應力與奈米晶可能是造成高硬度值的因素。氮化鈦薄膜的電阻率隨著堆積因子的上升而下降,而晶粒大小並不是影響電阻率變化的主要因素。

Nanocrystalline TiN films were deposited on Si(001) substrates using an unbalanced magnetron (UBM) sputtering system. The effect of nitrogen flow rates (ranging from 0.25 to 1.75 sccm) was studied on the composition, structure and properties of the TiN films. The grain size of the films was determined by x-ray diffraction, and the size was less than 7 nm diameters. The results of AFM and SEM image also showed a nanometer-size grain of the TiN thin film. The N/Ti ratio increased (N/Ti= 0.4~1.1) with nitrogen flow rates. The preferred orientation of the TiN films changed from (111) to (200), and back to (111) with increasing nitrogen flow rates. The film hardness was not varied with nitrogen flow rates and the variation of (111) preferred orientation. High residual stress and nanometer-size grain structure may be the factors that lead to the high hardness at a film thickness approximately 200 nm. The resistivity decreases with increasing packing factor, but is not sensitive to the grain size.

Chapter 1 Introduction………………………………………………. 1
Chapter 2 Literature Review ................................. 3
2.1 Coating Process .................................... 3
2.1.1 Magnetron Sputtering........................... 3
2.2 Structure of TiN.................................... 7
2.3 Effect of Nitrogen Flow Rate on the Deposition Rate11
2.4 Preferred Orientation..............................12
2.5 Lattice Parameter..................................14
2.6 Hardness...........................................15
2.7 Resistivity........................................16
Chapter 3 Experimental Details….. 18
3.1 Experimental Apparatus and Specimen Preparation....18
3.2 Characterization...................................20
3.2.1 XRD.............................................20
3.2.2 RBS.............................................22
3.2.3 XPS.............................................22
3.2.4 FE-SEM..........................................23
3.2.5 AFM.............................................23
3.3 Properties Measurements............................26
3.3.1 Resistivity.....................................26
3.3.2 Hardness........................................28
Chapter 4 Results...........................................31
4.1 Substrate Ion Current Density......................31
4.2 SEM................................................34
4.3 AFM................................................36
4.4 Deposition Rate....................................41
4.5 XRD................................................45
4.6 GIXRD..............................................51
4.7 RBS................................................55
4.8 XPS................................................62
4.9 Properties.........................................71
4.9.1 Hardness........................................71
4.9.2 Resistivity.....................................71
4.9.3 Residual Stress.................................72
Chapter 5 Discussion........................................80
5.1 Grain Size.........................................80
5.2 Preferred Orientation..............................82
5.3 Composition of the TiN Film Surface................83
5.4 Hardness...........................................85
5.5 Resistivity........................................86
5.6 Nano-composite of Ti-TiN...........................87
Chapter 6 Conclusions.......................................93
Chapter 7 Reference..........................................94

1. M.Ohring, The Material Science of Thin Films, p.111, Academic Press, San Diego (1992).
2. McLeod PS, Hartsough LD, J. Vac. Sci. Technol. 14(1), (1977) 263.
3. Waits RK, J. Vac. Sci. Technol. 15(2), (1978) 263.
4. B. Window, Surf. Coat. Technol. 71, (1995) 93.
5. Teer DG, US Patent No. 5 556 519.
6. P.J. Kelly, R.D. Arnell, Vacuum 56, (2000) 159.
7. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, J. Appl. Phys. 80, (1996) 6725.
8. L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York (1971).
9. J.A. Thorton and D.W. Hoffman, Thin Solid Films 171, (1989) 81.
10. Joanne L.Murray, Phase Diagram of Binary Titanium Alloys, p.176,
ASM International, Ohio (1987).
11. J.E. Sundgren, B.O. Johansson and S.E. Karlsson, Thin Solid Films 105, (1983) 353.
12. L. Combaidere, J. Machet, Surf. Coat. Technol. 82, (1996) 145.
13. J. Stimmel, J. Vac. Sci. Technol. B 4(6), (1986) 1377.
14. Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol. 90, (1997) 64.
15. S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol. 80, (1996) 66.
16. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 149, (2002) 7.
17. J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Thin Solid Films 355-356, (1999) 440.
18. Wuu-Ling Pan, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 110, (1998) 111.
19. S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol. 127, (2000) 144.
20. C.T. Chen, Y.C. Song, G.-P. Yu and J.-H. Huang, J. Mater. Eng. Perform. 7(3), (1998) 324.
21. F. Elstner, A. Ehrlich, H. Giegengack, H. Kupfer and F. Richter, J. Vac. Sci. Technol. A 12(2), (1994) 476.
22. J.-H. Huang, C,-H. Lin, Haydn Chen, Mater. Chem. Phys. 59, (1999) 49.
23. J.-H. Huang, C,-H. Lin, C.-H. Ma and Haydn Chen, Scrip. Mater. 42, (2000) 573.
24. Laurette Combadiere, Jean Machet, Surf. Coat. Technol. 88, (1996) 17.
25. M.I. Jones, I.R. McColl, D.M. Grant, Surf. Coat. Technol. 132, (2000) 143.
26. M. Kawamura, Y. Abe, H. Yanagisawa, K. Sasaki, Thin Solid Films 287, (1996) 115.
27. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140, (2001) 206.
28. W.D. Sproul, P.J. Rudnik and M.E. Graham, Surf. Coat. Technol. 39/40, (1989) 355.
29. Y.M. Chen, G.P. Yu, J.H. Huang, Surf. Coat. Technol. 141, (2001) 156.
30. Joshua Pelleg, L.Z. Zevin and S. Lungo, Thin Solid Films 197, (1991) 117.
31. V. Valvoda, R. Kuzel Jr, R. Cerny and J. Musil, Thin Solid Films 156, (1988) 53.
32. J.E. Sundgren, Thin Solid Films 128, (1985) 21.
33. A. Nelkel, in: R. Freer (ed.), The Physics and Chemistry of Carbides; Nitrides and Borides, p.485, Kluwer Academic Publishers, Netherlands (1990).
34. J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, p.95, American Institute of Physics, MA (1986).
35. O. Knotek, R. Elsing, G. Kramer and F. Jungblut, Surf. Coat. Technol. 46, (1991) 256.
36. I. Goldfarb, J. Pelleg and L. Zevin, Thin Solid Films 200, (1991) 117.
37. V. Valvoda, A.J. Perry, L. Hultman, J. Musil and S. Kadlec, Surf. Coat. Technol. 49, (1991) 181.
38. J.E. Sundgren, B.O. Johansson, S.E. Karlsson and H.T.G. Hentzell, Thin Solid Films 105, (1983) 367.
39. R.D. Arnell, J.S. Colligon, K.F. Minnebaev and V.E. Yurasova, Vacuum 47(5), (1996) 425.
40. Shozo Inoue, Takaaki Ohba, Hironori Takata, Keiji Koterazawa, Thin Solid Films 343-344, (1999) 230.
41. C.H. Sun, Thesis “The Optimization of the Deposition Process of TiN Thin Films on Si(100) Using Design of Experiment Method.” (2002).
42. P. Scherrer, Gött. Nachr 2, (1918) 98.
43. Leonid V. Azaroff and Martin J. Buerger, The Powder Method in X-Ray Crystallography, p.233, McGraw-Hill, New York (1958).
44. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corr. Sci. 43, (2001) 2023.
45. S.M. Sze, VLSI Technology, p.184, AT&T Bell Laboratories, Murray Hill, New Jersey (1983).
46. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7(6), (1992) 1564.
47. Kozo Tanaka, Hiroyuki Yanashima, Tadaaki Yako, Kunimasa Kamio, Kazumi Sugai, Shunji Kishida, Appl. Surf. Sci. 171, (2001) 71.
48. S. Satucci, L. Lazzi, M. Passacantando, P. Picozzi, R. Alfonsetti, R. Diamanti, G. Moccia, Thin Solid Films 290-291, (1996) 376.
49. I. Bertoti, M. Mohai, J.L. Sullivan, S.O. Saied, Appl. Surf. Sci. 84, (1995) 357.
50. I.C. Noyan and J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springe-Verlag, New York Inc. 1987, chapter 5.
51. K.W. Whang and Y.W. Seo, J. Vac. Sci. Technol. A 11, (1993) 1496.
52. M. Ohring, The Material Science of Thin Films, p.51, Academic Press, San Diego (1992).
53. J. Musil, V. Poulet, V. Valvoda, R. Kuzel, H. A. Jehn and M. E. Baumgartner, Surf. Coat. Technol. 60, (1993) 484.
54. J.E. Sundgren, B.O. Johansson, H.T.G. Hentzell and S.E. Karlsson Thin Solid Films 105, (1983) 385.
55. JCPDS, File No. 38.1420.
56. M. Wolff, J. Schultze and H.-H. Strehblow, Surf. Interf. Anal. 17, (1991) 726.
57. I.A. Ovid’ko, Science 295, (2002) 2386.
58. F.S. Shieu, L.H. Cheng, Y.C. Sung, J.H. Huang and G.P. Yu, J. Vac. Sci. Technol. A 15(4), (1997) 2318.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top