跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫鍾興
論文名稱:利用實驗規劃法研究磁控濺鍍氮化鈦薄膜之最佳化製程
論文名稱(外文):Using Design of Experiment to Optimize the Deposition Process of TiN Thin Film by Unbalanced Magnetron Sputtering
指導教授:黃嘉宏黃嘉宏引用關係喻冀平
指導教授(外文):Jia-Hong HuangGe-Ping Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:非平衡磁控濺鍍實驗規劃法氮化鈦
外文關鍵詞:unbalanced magnetron sputteringExperimental DesignTiN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
本實驗係研究利用非平衡式磁控濺鍍技術將氮化鈦薄膜鍍著於空白矽晶片上之最適化製程。由過去之研究結果得知,實驗規劃法為用來研究一未知製程之有效方法。本實驗研究之製程參數為鍍膜功率、氮氣分壓、靶材至試片距離、及試片高度。鍍著後之試片利用X光繞射及高分辨掃描式電子顯微鏡來研究覆膜之結構與柱狀晶尺寸,硬度則由奈米硬度機來量測,覆膜組成利用拉塞福背向散射決定,覆膜表面粗糙度由原子力顯微鏡觀察,而膜厚則由高分辨掃描式電子顯微鏡來決定。實驗之結果最後利用統計方法之平均值分析法(ANOM)以及變異數分析法(ANOVA)來分析。由分析之結果顯示,除了S7試片外,其餘試片並無氮化鈦薄膜之優選方向,N/Ti比率分布則由0.8到1.4,硬度值分布則由12.13到30.75 GPa,片電阻值分布則由59到951 cm,表面粗糙度則低於2 nm。利用統計方法,針對鍍著速率、硬度、組成、片電阻、堆積因子及粗糙度分別研究其最佳化條件。

In this study, we searched the optimum processes of titanium nitride (TiN) thin films deposited on Si (100) substrates using unbalance magnetron (UBM) sputtering system. Based on our previous studies, design of experiment is a powerful method to optimize an unknown process. The purpose of this thesis is to find the sensitive processing parameters that affect the film properties, and predict the optimum conditions. The major parameters, including deposition power, nitrogen partial pressure, distance between target and specimen and specimen height, were selected to optimize the deposition process. After deposition, the thin film structure and grain size were characterized by X-ray diffraction (XRD), and high-resolution scanning electron microscopy (SEM), respectively. The hardness of the TiN films was measured by a nanoindenter. N/Ti ratios of the thin film were determined using Rutherford backscattering spectroscopy (RBS). The composition depth profile was measured by secondary ion mass spectroscopy (SIMS). The resistivity of TiN films was measured by a four-point probe. The roughness of the film was determined by atomic force microscopy (AFM). The analysis of mean (ANOM) and analysis of variance (ANOVA) were used to investigate the effect of parameters on properties. The results showed that there is no dominant preferred orientation in the TiN film for all specimens, except specimen S7. N/Ti ratios ranged from 0.8 to 1.4 including the stoichiometric composition. Hardness values of TiN film ranged from 12.1 to 30.8 GPa. The resistivity of TiN films ranged from 59 to 951 -cm. The roughness for most of the films was lower than 2 nm. The optimum conditions have been obtained associated with deposition rate, hardness, N/Ti ratio, resistivity, packing factor and roughness, respectively.

Chapter 1 Introduction……………………………………………. 1
Chapter 2 Literature Review……………………………………… 3
2.1 Coating Process…………………………………………... 3
2.2 Film Formation and Structure Zone Model………………. 4
2.3 Atomic Reaction Formation Mechanism…………………. 9
2.4 Characteristics of TiN…………………………………….. 10
2.5 The Film Properties………………………………………. 10
2.5.1 Hardness……………………………………………... 10
2.5.2 Resistivity……………………………………………. 11
2.6 Design of Experiment (DOE)…………………………….. 11
Chapter 3 Experimental Detial…………………………………… 14
3.1 Preparation of Substrate Material and Coating Process….. 14
3.2 Structure Determination………………………………….. 17
3.2.1 X-ray diffraction (XRD)……………………………... 17
3.2.2 Field-emission scanning electron microscopy (FE-SEM)…………………………………………….. 17
3.3 Measurement of Composition……………………………. 18
3.3.1 Rutherford Backscattering Spectrometry (RBS)…….. 18
3.3.2 Secondary Ion Mass Spectroscopy (SIMS)………….. 18
3.3.3 X-Ray Photoelectron Spectrometry (XPS)…………... 19
3.4 Properties Measurements…………………………………. 19
3.4.1 Resistivity……………………………………………. 19
3.4.2 Hardness……………………………………………... 21
3.4.3 Roughness……………………………………………. 21
Chapter 4 Results………………………………………………….. 25
4.1 Analysis of Matrix Experiment Results…………………... 25
4.2 Structure…………………………………………………... 44
4.2.1 XRD………………………………………………….. 44
4.2.1.1 XRD…………………………………………. 44
4.2.1.2 GIXRD……………………………………………. 44
4.2.2 SEM………………………………………………….. 49
4.3 Composition…………………………………………….… 52
4.3.1 RBS…………………………………………………... 52
4.3.2 XPS…………………………………………………... 54
4.3.3 SIMS…………………………………………………. 56
4.3.4 AFM………………………………………………….. 58
Chapter 5 Discussion………………………………………………. 61
5.1 Hardness vs. N/Ti Ratio…………………………………... 61
5.2 Packing Factor vs. Resistivity……………………………. 64
5.3 Hardness………………………………………………….. 66
Chapter 6 Conclusions…………………………………………….. 68
Chapter 7 Reference……………………………………………….. 69
Appendix A…………………………………………………………… 72

P.S. McLeod and L.D. Hartsough, J. Vac. Sci. Technol., Vol.14, No.1, Jan./Feb. (1977) 263.
2. N. Savvides and B. Window, J. Vac. Sci. Technol., A4 (3), May/Jun. (1986) 505.
3. W.D. Sproul, P.J. Ohring, M.E. Graham and S.L. Rohde, Surf. Coat. Technol., 43/44 (1990) 273.
4. M. Ohring,” The material science of thin films “ Chapter 5, Academic
Press, San Diego (1992) 195.
5. M. Ohring,” The material science of thin films “ Chapter 5, Academic
Press, San Diego (1992) 223.
6. B.A. Movchan and A.V. Dechishin, Phys. Met. Metallogr., 28 (1969) 83.
7. J.A. Thornton, Ann. Rev. Mater. Sci., 7 (1977) 239.
8. R. Messier, A.P. Giri and R.A. Roy, J. Vac. Sci. Technol., A2 (2) (1984)
500.
9. J. Musil, S. Kadlec, V. Valvoda, R. Kuzel and R. Cerny, Surf. Coat.
Technol. 43/44 (1990) 258.
10. L.Hultman, J.E. Sundgren, and J.E. Greene, J. Appl. Phys. 66, 536 1989.
J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitora, Thin Solid Films, 197 (1991) 117.
12. J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys, 81(9) (1997) 6126.
13. U.C. Oh, Ho Je Jung, Jeong Y. Lee, J. Mater. Res., 13 (1998) 1225.
14. M. Zeitler, J.W. Gerlach, T. Kraus, B. Rauschenbach, Appl. Phys. Lett., 70(10) (1997) 1254.
15. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Thin Solid Films,
258 (1995) 159.
16. A.V. Bieli, H. Kheyrandisch and J.S. Colligon, Thin Solid Films, 200
(1991) 283.
17. Y. Andoh, K. Ogata, Y. Yamaki and S. Sakai, Nucl. Instrum. Methods
B, 39 (1989) 158.
18. W. Ensinger and B. Rauschenbach, Nucl. Instrum. Methods B,80-81
(1993) 1409.
19. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.-E. Sundgren, J.
Appl. Phys. 80 (1996) 6725.
20. L.E. Toth, “Transitional Metal Carbides and Nitrides”, Academic
Press, New York (1971).
D.S. Rickerby and P.J. Burnett, Thin Solid Films, 157 (1988) 195.
22. S. Chatterjee, T.S. Sudarshan and S. Chandrashekhar, J. Maert.
Sci.,27 (1992) 1989.
23. J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene,
in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.),” Physics and
Chemistry of Protective Coatings, American Institute of Physics”,
MA, 1986, p.95.
24. Wen.-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 140 (2001).
25. Madhav S. Phadke, ”Quality Engineering Using Robust Design”,
Prentice Hall, Englewood Cliffs, New Jersey, Chapter 3, 1989.
26. L.Hultman, J.E. Sundgren, J.E. Greene, D.B. Berdstrom, and
I. Petrov, J. Appl. Phys. 78 (9), 1 November 1995.
27. Liberman, M.A., Lichtenberg, A.J., in Plasma Discharges and
Materials Processing, J. Wiley & Sons, 1994, p.353.
28. C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. SchmÖlz, H. StÖri, Surf. Coat.Technol., 74-75 (1995) 1020.
29. W.Posadowski, L.Król-Stepniewska and Z.Ziolowski, Thin Solid
Films,62 (1979) 347.
30. J. -E. Sundgren, B.-O. Johansson, H. T. G. Hentzell and S. -E. Karlsson, Thin Solid Films 105 (1983) 385.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top