跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/28 13:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張欽柏
論文名稱:內置孔管對熱虹吸式熱管性質影響之研究
論文名稱(外文):The experimental study of the influence of concetric perforated pipe in closed two-phase thermosyphon
指導教授:白寶實白寶實引用關係簡國祥簡國祥引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:內置孔管熱虹吸式熱管
外文關鍵詞:concentric perforated pipeclosed two-phase thermosyphon
相關次數:
  • 被引用被引用:2
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
熱虹吸管為一常見之傳熱裝置,熱傳性能良好,多應用於熱交換器。其熱傳性質會隨著傾斜度、內部結構與液體填充量等因素而改變,如果經過適當的調整,可使傳熱效能增強。因此有許多相關研究,集中在了解各種因素對熱虹吸管的影響,進而找出提昇熱傳效能的方法。
本研究的目的,在於研究內置孔管對熱虹吸管熱傳性能的影響。這種方法可增強熱虹吸管性能,並具有簡單、便宜、效果明顯的優點,可在各種環境下使用,具有極高之實用性。然而目前對於其性質尚有許多待解之處,造成使用上的困難。本研究建立一熱虹吸管裝置,以實驗比較內置孔管與傳統熱虹吸管之差異,並找出傾斜狀態下,內置孔管對熱傳性質的影響。本實驗共研究8種不同尺寸的內置管,並使用傳統內置管作為對照組,每組實驗的傾斜角從0o到60o,熱通率由5kW/m2到35kW/m2。
本研究以實驗數據為基礎,修正Shiraishi所提出之傳統熱虹吸管經驗公式,並加入傾斜角之影響,其誤差經計算之後,均方根17.7%,標準差16.8%,與實驗數據相互吻合。Sun所提出之內置管經驗公式,較適用於 100kW/m2以上的高熱通率,本研究以實驗數據為基礎修正現有公式,經計算之後,經驗公式與實驗數據的均方根從11.7%到27.7%,標準差從11.2%到26.3%,介於合理範圍之內。

摘要 ................................................i
致謝 ...............................................ii
目錄 ..............................................iii
符號 ...............................................v
第一章 導論 .......................................1
第二章 文獻回顧 ...................................3
2.1. 熱虹吸管的熱傳模型 .............................3
2.2. 傾斜度對熱傳性質的影響 .........................3
2.3. 熱虹吸管性能的增強 .............................5
2.3.1 改變內部結構 .............................5
2.3.2 增加傳熱面積 .............................6
2.3.3 改變工作流體 .............................7
2.4. 微液膜分析理論 .................................7
2.5. 內置管的效益與理論分析 ........................7
第三章 理論分析 ...................................9
3.1. 傳統熱虹吸管熱傳分析 ...........................9
3.2. 傾斜熱虹吸管熱傳理論 ..........................12
3.3. 內置管熱傳理論 ................................12
3.3.1 內置管作用原理 ...........................12
3.3.2 內置管熱傳公式 ...........................14
3.4. 管壁熱阻 ......................................15
3.5. 逆向流動限制 ..................................16
第四章 實驗設備與實驗程序 ........................17
4.1. 實驗設備 ......................................17
4.1.1 熱虹吸管及內置管 .........................17
4.1.2 其他實驗設備 .............................21
4.2 實驗程序 .......................................22
第五章 實驗結果與討論 ............................24
5.1. 內置管與傳統熱虹吸管的比較 ....................24
5.1.1. 傳統熱虹吸管熱傳性質 ....................24
5.1.2. 垂直狀態下,內置管與傳統熱虹吸管的比較 ..25
5.1.3. 傾斜狀態下,內置管與傳統熱虹吸管的比較 ..27
5.2. 傾斜對內置管的影響 ............................32
5.3. 管間隙對內置管的影響 ..........................35
5.4. 傳統熱虹吸管經驗公式 ..........................41
5.5. 內置管經驗公式 ................................44
5.6 理論值與實驗值之誤差 ..........................49
第六章 結論與未來工作 ............................56
參考文獻 …………………………………………………………………………………………..57
附錄 實驗數據

1.Akbarzadeh, A., Lukitobudi, A.R., Johnson, P.W., and Hendy,
P., "Design, construction and testing of a thermosyphon heat
exchanger for medium temperature heat recovery in bakeries
“, Heat Recovery Systems and CHP, Vol.15, Issues 5, pp. 481-
491, July, 1995.
2.Michaelides, I.M., et. al.,” Comparison of performance and
cost effectiveness of solar water heaters at different
collector tracking modes in Cyprus and Greece”, Energy
Conversion and Management, Vol. 40, Issue 22, pp.1287-1303 ,
August 1999.
3.Akyurt, M., Lamfon, N.J., Najjar, Y.S.H., Habeebullah, M.H.,
and Alp, T.Y., “Modeling of waste heat recovery by looped
water-in-steel heat pipes”, International Journal of Heat
and Fluid Flow, Vol. 16, Issues 4, pp. 263-271, August, 1995.
4.Reed, J.G., and Tien, C.L., “Modeling of the Two Phase
Closed Thermosyphon”, Transactions of the ASME Journal of
Heat Transfer , Vol.109, pp. 722-730, August, 1987.
5.Imura, H.,Sakaguchi, K., and Kozai, H., ”Critical Heat Flux
in a Closed Two-Phase Thermosyphon”, Int. J. Heat Mass
Transfer, Vol. 26, No. 8, pp.1181-1188, 1983.
6.El-Genk, M.S., and Saber, H.S., “Flooding Limit in the
Closed, Two-Phase Flow Thermosyphons”, Int. J. Heat Mass
Transfer, Vol. 40, No. 9, pp.2147-21164, 1997.
7.Groll, M, and Spendel, Th.,”Thermal Behaviour of High
Performance Close Two-Phase Thermosyphon “, the 5th IHPC
Supplement, 1984.
8.Sun, S., Zhang, H., Zhuang, J., “Study of internal enhanced
boiling heat transfer mechanism of concentric perforated pipe
in thermosyphon”, Proceedings of the 10th IHPC, Stuttgart,
Germany, 1997.
9.Tong, M., Shi, C., and Xin, M., “Enhanced Heat Transfer
Experiment on Close Two-Phase Thermosyphon”, Journal of
Engineering Thermophsics, 5(4), 1984.
10.Zuo, Z.J., and Gunnerson, F.S., “Numerical modeling of the
steady-state two-phase closed thermosyphon”, Int. J. Heat
Mass Transfer, Vol. 37, No. 17, pp.2715-2722, 1994.
11.Shiraishi, M., Kikuchi, K., and Yamanishi, T.,
“Investigation of heat transfer characteristics of a two-
phase closed thermosyphon”, In Advances of Heat Pipe
Technology(Edited by D. A. Reay), pp.95-104, Pergamon Press,
New York, 1981.
12.El-Genk, M.S., Saber, H.H., “Determination of operation
envelopes for closed, two-phase thermosyphons”, Int. J.
Heat Mass Transfer, Vol.42, pp.889-903, 1999.
13.He, J., Ma, T., Zhang, Z., “Investigation of Boiling Liquid
Pool Height of a Two-Phase Closed Thermosyphon”,
Proceedings of the 8th IHPC, Beijing, China, pp.154-159,
1992.
14.Terdtoon, P., Waowaew, N., and Tantakom, P., “Internal flow
patterns of an inclined closed two-phase thermosyphon at
critical state : case study I, effect of aspect ratio”,
Experimental Heat Transfer, Vol. 12, No. 4, pp.75-85, 1998.
15.Payakaruk, T., Terdtoon, P., and Ritthidech, S.,
“Correlations to predict heat transfer characteristics of an
inclined closed two-phase thermosyphon at normal operating
conditions”, Applied Thermal Engineering, Vol. 20, pp.781-
790, 2000.
16.Lin, Lanchao, and Faghri, Amir, “An Analysis of Two-Phase
Flow Stability in a Thermosyphon with Tube Separator”,
Applied Thermal Engineering, Vol. 18, No. 6, pp.441-455,
1998.
17.Bezrodnyy, M.K., Volkov, S.S., and Alekseyenko, D.V.,
“Maximum heat transfer in thermosyphons with separated
uptake and downtake”, Heat transfer-Soviet Research, Vol.
15, No. 2, pp.108-114, 1983.
18.Bayley, F.J., and Lock, G.S.H., “Heat transfer
characteristics of the closed thermosyphon”, Transactions
of the ASME Journal of Heat Transfer, Vol. 87, pp.30-40,
1965.
19.Faghri, A., Chen, M.M., and Morgan, M. “Heat Transfer
Characteristics in Two-Phase Closed Conventional and
Concentric Annular Thermosyphons”. Transactions of the ASME
Journal of Heat Transfer, Vol. 111, pp.611-618, 1989.
20.Kiatsiriroat, T., Nuntaphan, A., and Tiansuwan, J.,
“Thermal performance enhancement of thermosyphon heat pipe
with binary working fluids”, Exp. Heat Transfer, Vol. 13,
No. 2, pp. 137-152, 2000.
21.Moore, F.D., and Mesler, R.B., “The Measurement of Rapid
Surface Temperature Fluctuations during Nucleate Boiling of
Water”, AIChE J., Vol. 7, pp. 620-624, 1961.
22.Cooper, M.G., and Loyd, A.J.P., “The Microlayer in Nucleate
Boiling”, Int. J. Heat Mass Transfer, Vol. 12, pp.895-913,
1969.
23.Sernas, V., and Hooper, F.C., “The initial vapor bubble
growth on a heated wall during nucleate boiling”, Int. J.
Heat Mass Transfer, Vol. 12, pp.1627-1639, 1969.
24.Van Helden, W.G..J., van der Geld, C.W.M, and Boot, P.G..M.,
“Forces on Bubble Growing and detatching in flow along a
vertical wall”, Int. J. Heat Mass Transfer, Vol. 38, No.
11, pp. 2075-2088, 1995.
25.El-Genk, M.S., and Saber, H.H., “Heat transfer correlations
for small, uniformly heated liquid pools”, Int. J. Heat
Mass Transfer, Vol. 41, No. 2, pp.261-274, 1998.
26.El-Genk, M.S., and Saber, H.H., “Heat transfer correlations
for liquid film in the evaporator of enclosed, gravity-
assisted thermosyphons”, Transactions of the ASME Journal
of Heat Transfer, Vol. 120, pp. 477-484, 1998.
27.Negishi, K., and Sawada, T., “Heat transfer performance of
an inclined two-phase closed thermosyphon”, Int. J. Heat
Mass Transfer, Vol. 26, No. 8, pp. 1207-1213, 1983.
28.潘欽, “沸騰熱傳與雙相流”, pp.56-58, 俊傑書局股份有限公司,
2001.
29.Faghri, A., Chen, M.M., and Morgan, M., “Heat transfer
characteristics in two-phase closed conventional and
concentric annular thermosyphons”, Transactions of the ASME
Journal of Heat Transfer, Vol. 111, pp.611-618, August 1989.
30.Nishikawa, K., Fujita, Y., Uchida, S., and Ohta, H.,
“Effect of surface configuration on nucleate boiling heat
transfer”, Int. J. Heat Mass Transfer, Vol. 27, No. 9, pp.
1559-1571, 1984.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top