|
[1] S. Fang and J. P. McVittie, “Charging damage to gate oxides in an O2 magnetron plasma,” J. Appl. Phys., Vol. 72, p. 4865, 1992. [2] S. Murakawa, S. Fang, and J. P. McVittie, “Surface charging effects on etching profiles,” IEDM Tech. Dig., 1992, p.57. [3] S. Fang and J. P. McVittie, “Oxide damage from plasma charging breakdown mechanism and oxide quality,” IEEE Trans. Electron Devices, Vol. 41, p.1034, 1994. [4] C. T. Gabriel, “Gate oxide damage from polysilicon etching,” J. Vac. Sci. Tech., B, Vol. 9, p.370, 1991. [5] W. M. Greene, J. B. Kruger, and G. Kooi, “Magnetron etching of polysilicon: etching damage,” J. Vac. Sci. Tech., B, Vol. 9, p.366, 1991. [6] C. Gabriel, S. Bothra, Milin, and T. Herbst, “Plasma process-induced charging through contacts and vias,” Proc. of VMIC, 1995, p. 394. [7] B. Y. Tsui, S. H. Liu, G. Lih, J. H. Ho, C. H. Chang, and C. Y. Lu, “Recovery phenomenon and local filed sensitivity on wafer charge-up effect of magnetically enhanced reactive ion etch system,” IEEE Electron Device Lett., Vol. 16, p.64, 1995. [8] S. Fang, S. Murakawa, J. P. McVittie, “Modeling of oxide breakdown from gate charging during resist ashing,“ IEEE Trans. Electron Devices, vol. 10, p.1848, 1994. [9] H. J. Tao et al, “Impacts of etcher chamber design on plasma induced devices damage for advanced oxide etching,” 3rd International Symp. on PPID, 1998, p.60. [10] K. Hashimoto et al, “Reduction of the charging damage from electron shading effect,” Appl. Phys. Lett., Vol.62, p.1507, 1993. [11] K. Noguchi et al, “Reliability of thin gate oxide under plasma charging caused by antenna topography-dependent electron shading effect,” IEDM Tech. Dig., 1997, p.441. [12] B. Chapman, “Glow Discharge Processes,” John Wiley & Sons Inc., 1980. [13] K. P. Cheung and C. P. Chang, “Plasma-charging damage: a physical model,” J. Appl. Phys., Vol.75, p.4415, 1994. [14] M. Alavis et al, “Effect of MOS devices scaling on process-induced gate charging”, 2nd International Symp. on PPID, 1997, p.7. [15] C. Hu, J. Zhao, G. P. Li, P. Liu, E. Worley, J. White, and R. Kjar, "The effect of plasma etching induced gate oxide degradation on MOSFET’s 1/f noise," IEEE Electron Device Lett., vol. 16, p.61, 1995. [16] W. K. Chim, B. P. Yeo, P. S. Lim and D. S. H. Chan, "Low-frequency noise characterization of latent damage in thin oxides subjected to high-field impulse stressing," IEEE Electron Device Lett., vol. 19, p.363, 1998. [17] K. Lai et. al., “Effects of oxide exposure, photoresist and dopant activation on the plasma damage immunity of ultrathin oxides and oxynitrides,” IEDM Tech. Dig., 1995, p.319. [18] S. V. Hattangady, R. Kraft, D.T, Grider, M.A. Douglas, G. A. Brown, P. A. Tiner, J. W. Kuehne, P. E. Nicollian, and M. F. Pas, “Ultrathin nitrogen-profile engineered gate dielectric films,” IEDM Tech. Dig., 1996, p.495. [19] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid, and C. Gelatos, “High performance 20Å NO oxynitride for gate dielectric in deep sub-quarter mircon CMOS technology,” IEDM Tech. Dig., 1997, p.651. [20] K. S. Chang-Liao and L. C. Chen, “Physical and electrical properties in metal-oxide-Si capacitors with various gate electrodes and gate oxides,” J. Vac. Sci. Technol. B, Vol. 15, p.942, 1997. [21] K. S. Chang-Liao and J. M. Ku, “ Improvement of oxynitride reliability by two-step N2O nitridation,” Solid-State Electronics, vol.43, p.2057, 1999. [22] D. Park and C. Hu, “ Plasma charging damage on ultrathin gate oxides,” IEEE Electron Device Lett., vol. 19, p.1, 1998. [23] H. Iwai and H. S. Momose, “Ultra-thin gate oxides-performance and reliability,“ IEDM Tech. Dig., 1998, p.163. [24] T. P. Ma, “Making silicon nitride a viable gate dielectric,” IEEE Trans. Electron Devices, vol. 45, p.680, 1998. [25] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Robert and D. L. Kwong, “High quality Ta2O5 gate dielectrics with Tox.eq<10Å,“ IEDM Tech. Dig., 1999, p.141. [26] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, “Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric” IEEE Electron Device Lett., vol. 21, p. 540, 2000. [27] Hyungsuk Jung, Kiju Im, Dooyoung Yang, and Hyunsang Hwang, “Electrical and reliability characteristics of an ultrathin TaOxNy gate dielectric prepared by ND3 annealing of Ta2O5,” IEEE Electron Device Lett., vol. 21, p.563, 2000. [28] S. Ma, “Prediction of plasma charging induced gate oxide tunneling current and antenna dependence”, 1st International Symp. on PPID, 1996, p.20. [29] J. P. McVittie, “Plasma charging damage: An overview”, 1st International Symp. on PPID, 1996, p.7. [30] M. A. Lieberman et al, “Principles of plasma discharges and materials processing”, John Wiley & Sons, 1994. [31] O. A. Popov, “High density plasma sources,” Noyes Publications, 1995. [32] K. Eriguchi, Y. Uraoka, H. Nakagawa, T. Tamaki, M. Kubota, and N. Nomura, “Quantitative evaluation of gate oxide damage during plasma processing using antenna-structure capacitors,” Jpn. J. Appl. Phys., Vol. 33, p.83, 1994. [33] L. K. Han, M. Bhat, D. Wristers, J. Fulford, and D. L. Kwong, “Polarity dependence of dielectric breakdown in scaled SiO2,” IEDM Tech. Dig., 1994, p.617. [34] K. R. Mistry, B. J. Fishbein, and B. S. Doyle, “Effect of plasma-induced charging damage on n-channel and p-channel MOSFET hot carrier reliability,” Proc. of IRPS, 1994, p.42. [35] K. Noguchi, and K. Okumura, “The effect of plasma-induced oxide and interface degradation on hot carrier reliability,” Proc. of IRPS, 1994, p.232. [36] S. Wolf, “Silicon processing for the VLSI era, Vol.3,” Lattice Press, p.573, 1995. [37] K. Tamabe et al, “Degradation of silicon dioxide film under high electric field stress”, 1st International Symp. on PPID, 1996, p.243. [38] B. Prince, “Semiconductor Memories,” John Wiley & Sons, p.609, 1991. [39] E. Cartier, “Characterization of the hot-electron-induced degradation in the thin SiO2 gate oxides”, Microelectronics and Reliability, Vol.38, p.201, 1998. [40] H. S. Momose et al, “Study of the manufacturing feasibility of 1.5nm direct-tunneling gate oxides”, IEEE Electron Device Lett., Vol.45, p.691, 1998. [41] T. Gu et al., “Impact of polysilicon dry etching on 0.5 μm NMOS transistor performance: the presence of both plasma bombardment damage and plasma charging damage,” IEEE Electron Device Lett., vol. 15, p. 48, 1994 [42] S. Wolf, “Silicon processing for the VLSI era, Vol.3,” Lattice Press, p.436, 1995. [43] K. S. Chang-Liao et al, “MOS capacitor hot electron and radiation hardness improvement by combination of gate electron deposited using amorphous Si and gate oxides rapid thermal annealed in N2O,” Jpn. J. Appl. Phys., Vol.36, p.604, 1997. [44] Y. Okayama et al, “Nitrogen incorporation optimization for down-scaled CMOSFET with N2O based oxynitride process,” Int. Symp. on VLSI Tech., 1998, p.220. [45] C. Hu et al., “Hot-electron-induced MOSFET degradation — model, monitor, and improvement,” IEEE Trans. Electron Devices, Vol. 32, p.375, 1985. [46] W. Ting, H. Hwang, J. Lee, D.L. Kwong, “Composition and growth Kinetics of ultrathin SiO2 films formed by oxidizing Si substrate in N2O,” Appl. Phys. Lett., Vol. 57, p.2808 , 1990 [47] R. P. Vasquez and A. Madhukar, ”Strain-dependent defect formation kinetics and a correlation between flatband voltage and nitrogen distribution in thermally nitrided SiOxNy/Si structures,” Appl. Phys. Lett., Vol. 47, p.998, 1985. [48] A. Pacelli et al, “Effect of N2O nitridation on the electrical properties of MOS gate oxides”, Microelectronic and Reliability, Vol. 38, p.239, 1998. [49] K. S. Chang-Liao and J. M. Ku, “Improvement of oxynitride reliability by two-step N2O nitridation,” Solid-State Electronics, vol.43, p.2057, 1999. [50] S. Wolf, “Silicon Processing for the VLSI era, Vol. 3,” Lattice Press, p.513, 1995. [51] S. Fang and J. P. McVittie, “Model for oxide damage gate charging during magnetron etching,” Appl. Phys. Lett., Vol.62, p.1507, 1993. [52] T. Hori et al., “Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing,” IEEE Trans. Electron Devices, vol.36, p.340, 1989. [53] T. Hori, “Inversion layer mobility under high normal field in nitrided-oxide MOSFET’s,” IEEE Trans. Electron Devices, vol. 37, p. 2058, 1990. [54] B. Yu et al., “Gate engineering for deep-submicron CMOS transistors,” IEEE Trans. Electron Devices, vol. 45, p. 1253, 1998.
|