跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 14:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜政宏
研究生(外文):Cheng-Hong Jiang
論文名稱:加馬照射有機低介電常數材料對抑制銅擴散的影響
論文名稱(外文):Suppression of Copper Diffusion by γ Irradiated low-k Organic Dielectric Material
指導教授:王天戈張廖貴術
指導教授(外文):Tien-Ko WangKuei-Shu Chang-Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:119
中文關鍵詞:低介電常數材料HOSP輻射
外文關鍵詞:Culow-k dielectric materialHOSPIrradiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體多層金屬內連線製程中的金屬材料與低介電常數材料由傳統的Al和SiO2已逐漸被Cu和low-k材料所取代。但銅在高溫環境下容易有擴散現象發生,進而影響元件電特性,所以抑制銅金屬在低介電常數材料中的擴散是個十分值得研究的課題。本實驗主要在探討是否可利用加馬射線照射有機低介電常數材料HOSP以加強其對銅擴散的抑制。由文獻可知,至今尚無利用輻射照射改善低介電常數材料抑制銅擴散之相關研究。本研究針對照射劑量之選擇先作探討。規劃三種照射劑量範圍,(a)高劑量:劑量大於10Mrad;(b)中劑量:劑量介於1~10Mard之間;(c)低劑量:劑量小於1Mrad,同時利用電性分析來觀察這些劑量對於HOSP材料所造成的影響。由研究結果得知,低劑量照射可以改善HOSP材料的電特性。其次,為了探討加馬照射對於HOSP抑制銅擴散現象的影響,乃製作銅電容元件進行電性分析。首先先針對經過不同退火時間(溫度同為400℃)的各種照射劑量之樣品來作探討,其時間變化分別為30min、60min和90min。其次針對經過不同退火溫度(時間同為1hr)的各種照射劑量之樣品作探討,其溫度變化分別為300℃、400℃和500℃;同時,亦針對樣品在不同退火溫度下,找出改善低介電常數材料之電特性的最佳照射劑量。由本實驗結果可歸納得知,最佳照射劑量為0.4Mrad,最佳的退火溫度為300℃,而最佳退火時間為60min。

第一章 緒論及文獻回顧…………………………………………1
1.1 前言………………………………………………………...1
1.2 文獻回顧…………………………………………………...2
1.2.1銅製程技術………………………………………….3
1.2.2低介電常數材料簡介……………………………….6
1.2.3抑制銅擴散技術………………………………........10
1.3 各章摘要…………………………………………………..10
第二章 實驗方法及HOSP基本特性…………………………..18
2.1 低介電常數材料(HOSP)特性…………………………….18
2.2 實驗步驟…………………………………………………..19
2.3 低介電常數材料物性分析………………………………..22
2.3.1 厚度及折射率分析………………………………...22
2.3.2 傅利葉轉換紅外線光譜分析儀分析……………...23
2.3.3 X光光電子能譜術分析……………………………25
2.3.4 二次離子質譜儀分析……………………………..26
2.4 鈷六十輻射照射簡介…………………………………….28
第三章 照射劑量探討………………………………………......40
3.1 研究動機………………………………………………….40
3.2 劑量探討………………………………………………….42
3.2.1 高劑量探討………………………………………..43
3.2.2 中劑量探討………………………………………..46
3.2.3 低劑量探討……………………………………......47
3.3 綜合討論………………………………………………….47
第四章 銅擴散的探討…………………………………………..66
4.1 研究動機………………………………………………….66
4.2 退火時間探討…………………………………………….67
4.3 劑量探討………………………………………………….71
4.4 退火溫度探討…………………………………………….76
4.5 綜合討論.............................................................................77
第五章 結論與建議……………………………………………..112
5.1 結論……………………………………………………….112
5.2 建議……………………………………………………….113
參考文獻…………………………………………………………116

[1]劉柏村,“Effects of Post-treatments on Low Dielectric Constant Materials for Multilevel Interconnect Applications”, 國立交通大學碩士論文(2000)
[2] D. Edelstein, J. Heidenreich, R. Goldblatt, W.Cote, C. Uzoh, N. Lustig,
P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik,
H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full Copper Wiring in a
Sub-0.25μm CMOS ULSI Technology”, IEDM, 1997, 773~776
[3] S. Venkatesan, et al., IEDM (1997) p.769~772
[4]蔡宗鳴,“Study on Low Dielectric Constant Material in ULSI technology
Applications ”, 國立交通大學碩士論文(2000)
[5] For a discussion on diffusion in silicon, see, for example, J. C. C. Tsai, “Diffusion,” in S. M. Sze, Ed., VLSI Techology, McGraw-Hill, New
York, 1983
[6] “IBM Makes Breakthrough To Copper” Electronic Buyers’ News, 9/22 1997
[7] D. Hymes, I. Malik, J. Zhang, R. Emami, Solid State Technology, Jul., 1997, pp. 209
[8] R. R. Thomas, F. B. Kaufman, J. T. Kirleis, and R. A. Belsky, J. Electrochemical Soc., 1996, Vol.143, pp. 643
[9] D. Louis, C. Peyne, C. Arvet, E. Lajoinie, D. Maloney, S. Lee,“Post Etch Cleaning of Dual Damascene System Integrating Copper and SiLK”, 1999 IEEE, p.103
[10] S. P.Murarka, R. J. Gutmann, A. E. Kaloyeros, and
W. A. Lanford,”Advanced Multilayer Metallization Schemes with Copper as Interconnection Metal”, Thin Solid Films, 236, P.257 (1993)
[11] Bi-Shiou Chiou, Jiann-Shan Jiang, Hsueh-Wen Wang, and Han-Yi Hung,“Electromigration in Sputtered Copper Interconnection with Polyimide as Interlevel Dielectric or Passivation”, 2000 IEEE, p.1686-1689
[12] Shi-Qing Wang and Edith Ong,“FILLING OF CONTACTS AND INTERCONNECTS WITH Cu BY XeCl LASER REFLOW”, June 12-13, 1990 VMIC Conference, 1990 IEEE, p.431-434
[13] D. H. Kim, R. H. Wentorf, and W. N. Gill, “Low Pressure Chemical Vapor Deposited Copper Films for Advanced Device Metallization”, J. Electrochem. Soc.140, p.3273 (1993)
[14] J. Proost, T. Hirato, T. Furuhara, K. Maex, J.-P. Celis,“Microtexture and electromigration-induced drift in electroplated damascene Cu”, Journal of Applied Physics, vol.87, NO.6, p.2792 (March 2000)
[15] G. Friese, A. Abdul, Hak, B. Schwierzi, U. Hohne,“Influence of Processing Parameters on Selectivity in a CVD-process of Copper using Cu+1(hfac)(TMVS)”
, Materials for Avanced Metallization 1997, p.152-154
[16] Cheng-Hong Lee, Kuei-Hung Shen, Tzu-Kun Ku, Cheng-Hung Luo, Chia-Chun Tso, Hung-Wen Chou and Chin Hsia,“CVD Cu technology for advanced Cu interconnect applications”, 2000 IEEE, p.242-244
[17] Changsup Ryu; Kee-Won Kwon; Loke, A.L.S.; Haebum Lee; Nogami, T.; Dubin, V.M.; Kavari, R.A.; Ray, G.W.; Wong, S.S.,“Microstructure and Reliability of Copper Interconnects”, Electron Devices, IEEE Transactions on, Volume: 46 Issue: 6 , June 1999 ,P. 1113 -1120
[18] M. T. Wang, Y. C. Lin, and M. C. Chen, J. Electrochem. Soc., Vol.145, No.7, July 1998
[19] M. S. Angyal, and Y. Shacham-Diamand, Appl. Phys. Lett.67, 9 Oct. 1995
[20] L. A. Clevenger, N. A. Bojarczuk, J. Appl. Phys. 73, 1 Jan. 1993
[21] W. H. Teh, L. T. Koh, S. M. Chen, J. Xie, C. Y. Li, P. D. Foo,“Evaluation of
the performance of TaN diffusion barrier against copper diffusion using SIMS
and AFM”, Electronics Letters, Volume: 37 Issue: 10, 10 May 2001, p. 660 -661
[22] T. Kawanoue, T. Iijima, T. Matsuda, Y. Yamada, M. Morikado, K. Sugimae,
T. Kajiyama, H. Maekawa, T. Hamamoto, J. Kumagai, H. Kaneko,
N. Hayasaka,“Quantitative analysis on Cu diffusion through TaN barrier metal
and the device degradation by using two-level Cu-interconnects implemented
0.25μm-256Mbit DRAMs”, Interconnect Technology Conference, 2000,
Proceedings of the IEEE 2000 International, 2000, p.199 —201
[23]鄭懿芳, “Study on Integration of Low Dielectric Constant Material
Hydrogen Silsesquioxane(HSQ) and Copper”, 國立交通大學碩士論文(1999)
[24] J. Kawahara, K. Shiba, M. Tagami, M. Tada, S. Saito, T. Onodera,
K. Kinoshita, M. Hiroi, A. Furuya, K. Kikuta and Y. Hayashi,“Highly
Thermal-stable, Plasma-Polymerized BCB Polymer Film (k=2.6) for Cu
Dual-Damascene Interconnects”, 2000 IEEE, 2000 Symposium on VLSI
Technology Digest of Technical Papers, p.20-21
[25] H. D. Jeong, H. S. Park, H. J. Shin, B. J. Kim, H. K. Kang, M. Y. Lee,” Integration of Low k Methyl Silsesquioxane in a Non-Etchback/CMP process for 0.25 μm LSI Device”, 1999 IEEE, p.190
[26]劉百倉, “Study on Organic Low Dielectric Material FPI in VLSI Technology Application”, 國立雲林科技大學碩士論文(2000)
[27] Yuhuan Xu, Yipin Tsai, D. W. Zheng, K.N. Tu, Chung Wo Ong, Chung Loong Choy, Bin Zhao, Q.-Z. Liu, and Maureen Brongo,“Measurement of mechanical properties for dense and porous polymer films having a low dielectric constant”, J. Appl. Phys., Vol. 88, No. 10, 15 November 2000, p.5744-5750
[28] Shigeki Hirasawa, Yoko Saito, Hiroki Nezu, Naofumi Ohashi, and Hiroyuki Maruyama,“Analysis of Drying Shrinkage and Flow Due to Surface Tension of Spin-Coated Films on Topographic Substrates”, IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 4, November 1997, p.438-444
[29]莊達人主編, “VLSI製造技術”, 高立圖書有限公司, 1997五版
[30] S. K. Gupta, MRS Symposium Proceedings, Vol.108, 1988, p.275
[31] P.-F. Wang, S.-J. Ding, J.-Y. Zhang, D.W. Zhang, J.-T. Wang, W.W. Lee,
“Low-dielectric-constant α-SiCOF film for ULSI interconnection prepared by
PECVD with TEOS/C4F8/O2”, Appl. Phy. A 72, 721-724(2001)
[32] A. Grill and V. Patel,” Low dielectric constant films prepared by
Plasma-enhanced chemical vapor deposition from tetramethylsilane”, J. Appl.
Phys., Vol. 85, No. 6, 15 March 1999, p.3314-3318
[33] A. Courtot-Descharles, F. Pires, P. Paillet, J.L. Leray,“Density functional
theory applied to the calculation of dielectric constant of low-k materials”,
Microelectronics Reliability 39 (1999) 279-284
[34] Suresh Baskaran, Jun Liu, Karel Domansky, Nathan Kohler, Xiahong Li,
Christopher Coyle, Glen E. Fryxell, Suntharampillai Thevuthasan, and Ralph E.
Williford,“Low Dielectric Constant Mesoporous Silica Films Through
Molecularly Templated Synthesis”, Adv. Mater. 2000, 12, No. 4
[35] Hong-Ryul Kim and Hyung-Ho Park,” Surface modified SiO2 xerogel films
from HMDS/Acetone for intermetal dielectrics ”, Microprocesses and
Nanotechnology Conference, 2000 International, 2000, p.218-219
[36] Tetsuya Homma,“Low dielectric constant materials and methods for
interlayer dielectric films in ultralarge-scale integrated circuit multilevel
interconnection”, Materials Science and Engineering, R23 (1998) 243-285
[37]葉斯哲,”The Improvement of Low Dielectric Constant Hydrogen
Silisequioxane Using NH3 Plasma Treatment for Copper Interconnect
Application”,國立交通大學碩士論文(1999)
[38] T. C. Chang, P. T. Liu, M. S. Feng, Y. F. Cheng, S. M. Sze, F. M.
Pan, B. T. Dai, H. D. Huang, H. C. Liou, F. Y. Shih,” The Effective Method
in Abating Copper Diffusion through Low-k Hydrogen Silsesquioxane
(HSQ) by H2 Plasma Treatment”, Symposium on Nano Device Technology,
1999
[39] N. Matsubara, H. Mizuhara, K. Misawa K. Yamashita, T. Goto, Y. Inoue
and A. Ibaraki,“Properties of Ion-Implanted Low-k Organic SOG”, 2001 IEEE,
p.165-167
[40] I-Chung Deng,“Suppress Copper Diffusion through Barrier Metal-Free
structure by Using Ion Implantation into Low-k Material”, Microprocesses and
Nanotechnology Conference, 2001 International, 2001, p.120-121
[41] Sun-Young Kim, Sungwoong Chung, Joohan Shin, Nae Hak Park, Jun Ki
Kim, Jin Won Park,“HOSP as a Low Dielectric Material:Comparative Study
Against Hydrogen Silsesquioxane”, VLSI and CAD, 1999. ICVC '99. 6th
International Conference on, 1999 IEEE, p.218-221
[42]蘇醒,“Study of Hybrid-Organic-Siloxane-Polymer(HOSP)-A Low Dielectric
Constant Material for ULSI Applications”,國立交通大學碩士論文(2000)
[43] A. R. Forouhi and I. Bloomer, Phys. Rev. B, 34(1986) 7018
[44] A. R. Forouhi and I. Bloomer, Phys. Rev. B, 38(1988) 1865
[45] J. Szcrzyrbowski, Thin Solid Films, 130(1985) 57
[46]汪建民主編, “材料分析”, 中國材料科學學會, 1998初版
[47]杜政道,“The Interaction and Mechanism between Copper and low-k
Dielectric Constant Material”,國立清華大學碩士論文(2000)
[48] P. Bornhauser and G. Calzaferri, Spectrochim. Acta, Part A, 46(1990) 1045
[49]“鈷-六十輻射滅菌館設施建立安全分析報告”, 國立清華大學原子科學技
術發展中心同位館組, 中華民國83年4月修訂版
[50] C. A. Chang, ”Formation of Copper Silicides from Cu (100)/Si (100) and
Cu (111)/Si (111) Structure”, J. Appl. Phys. 67, p.566 (1990)
[51] B. Y. Tsui and M. C. Chen, ”Dielectric Degradation of Pt/SiO2/Si
Structures during Thermal annealing”, Solid State Electronics 36, 583(1993)
[52] Y. Shacham-Diamand and A. Dedhia, D. Hoffstetter and W. G. Oldham,
“Copper Transport in Thermal SiO2”, J. Electrochem. Soc., Vol. 140, No.8,
August 1993
[53] J. D. McBrayer, R. M. D. Swanson, and T. W. Sigmon, ”Diffusion of Metals
in Silicon Dioxide”, J. Electrochem. Soc. Vol.133, No.6, June. 1986
[54] G. Raghavan, C. Chiang, P. B. Anders, S. M. Tzeng, Rvillasol, G. Bai,
M. Bohr, and D. B. Fraser, “Diffusion of copper through dielectric films
under bias temperature stress”, Thin Solid Films, 262, 168(1995)
[55] Ying-Kai Fu,“THE PROSPECTS OF RADIATION APPLICATION”, Nucl.
Sci. J. Vol.27, No.1, February 1990
[56] H.A.Ashry and F.A.S.Soliman,“Operation of some Semiconductor under
the Influence of Ionizing Radiation”, Nucl. Sci. J. Vol.31, No.1, February 1994
[57] 王文濱,“輻射照射工程應用-電線電纜之製造生產”, 原子能委員會彙報, 第
21卷, 第4期, 民國74年8月

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top