|
[1] I. M. Boyarinov and G. L. Katsman, ``Linear unequal error protection codes,'' IEEE Trans. Inform. Theory, vol.IT-27, pp. 168-175, Mar. 1981. [2] W. J. van Gils, ``Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes,'' IEEE Trans. Inform. Theory, vol. IT-29, pp. 866-876, Nov. 1983. [3] W. J. van Gils, ``Linear unequal error protection codes from shorter codes,'' IEEE Trans. Inform. Theory, vol. IT-30, pp. 544-546, May 1984. [4] B. Masnick and J. K. Wolf, ``On linear unequal error protection codes,'' IEEE Trans. Inform. Theory, vol. IT-13, pp. 600-607, July 1967. [5] A. R. Calderbank and N. Seshadri, ``Multilevel codes for unequal error protection,'' IEEE Trans. Inform. Theory, vol. 39, pp. 1234-1248, July 1993. [6] L.-F. Wei, ``Coded modulation with unequal error protection,'' IEEE Trans. Commun., vol. 41, pp. 1439-1449, Oct. 1993. [7] D. G. Mills and D. J. Costello, Jr., ``Using a modified transfer function to calculate unequal error protection capabilities of convolutional codes,'' in Proc. 1993 IEEE Int. Symp. Inform. Theory, San Antonio, TX, Jan. 1993, p. 144. [8] D. G. Mills and D. J. Costello, Jr., ``A bound on the unequal error protection capabilities of rate k/n convolutional codes,'' in Proc. 1994 IEEE Int. Symp. Inform. Theory, Trondheim, Norway, June 1994, p. 274. [9] K. Yamaguchi and H. Imai, ``Construction of unequal error protecting convolutional codes from low rate convolutional codes,'' in Proc. 1994 IEEE Int. Symp. Inform. Theory, Trondheim, Norway, June 1994, p. 275. [10] R. H. Morelos-Zaragoza and H. Imai, ``Binary multilevel convolutional codes with unequal error protection capabilities,'' IEEE Trans. Commun., vol. 46, pp. 850-853, July 1998. [11] M.-C. Chiu, C.-C. Chao, and C.-H. Wang, ``Convolutional codes for unequal error protection,'' in Proc. 1997 IEEE Int. Symp. Inform. Theory, Ulm, Germany, June 1997, p. 290. [12] C.-H. Wang and C.-C. Chao, ``Further results on unequal error protection of convolutional codes'', in Proc. 2000 IEEE Int. Symp. Inform. Theory, Sorrento, Italy, June 2000, p. 35. [13] A. Lientz and J. Villasenor, ``Very low variable-rate convolutional codes for unequal error protection in DS-CDMA systems,'' IEEE Trans. Commun., vol. 45, pp. 753-755, July 1997. [14] J. Hagenauer, ``Rate-compatible punctured convolutional codes (RCPC codes) and their applications,'' IEEE Trans. Commun., vol. 32, pp. 389-400, Apr. 1988. [15] L. H. C. Lee, ``New rate-compatible punctured convolutional codes for Viterbi decoding,'' IEEE Trans. Commun., vol. 42, pp. 3073-3079, Dec. 1994. [16] P. K. Frenger, P. Orten, T. Ottosson, and A. B. Svensson, ``Rate-compatible convolutional codes for multirate DS-CDMA systems,'' IEEE Trans. Commun., vol. 47, pp. 828-836, June 1999. [17] A. S. Barbulescu and S. S. Pietrobon, ``Rate compatible turbo code,'' Electron. Lett., vol. 31, pp. 535-536, Mar. 1995. [18] C. H. Wang and C. C. Chao, ``Path-compatible pruned convolutional (PCPC) codes,'' IEEE Trans. Commun., vol. 50, pp. 213-224, Feb. 2002. [19] O. Collins, ``Pruning the trellis,'' in Proc. 1991 IEEE Int. Symp. Inform. Theory, Budapest, Hungary, June 1991, p. 50. [20] C.-H. Wang and C.-C. Chao, ``Path-compatible pruned convolutional (PCPC) codes: a new scheme for unequal error protection'', in Proc. 1998 IEEE Int. Symp. Inform. Theory, Cambridge, MA, Aug. 1998, p. 306. [21] R. J. McEliece, ``The algebraic theory of convolutional codes,''in Handbook of Coding Theory, V. S. Pless and W. C. Huffman eds. Amsterdam, The Netherlands: Elsevier, 1998, pp. 1065-1138. [22] S. B. Wicker, Error Control Systems for Digital Communication and Storage. Englewood Cliffs, NJ: Prentice-Hall, 1995. [23] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
|