跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊裕仁
論文名稱:利用全球定位系統選擇隨意網路上的長時效性封包路由協定
論文名稱(外文):Maximal Lifetime Routing Algorithm using GPS In Mobile Ad-hoc Network
指導教授:李端興李端興引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:32
中文關鍵詞:隨意網路最短路徑最長殘餘時間全球定位系統
外文關鍵詞:Ad-hoc Networkshortest pathmaximal lifetime pathGPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:1
隨著無線通訊技術的進步,隨意網路系統也逐漸受到重視與歡迎,而有關於隨意網路上的相關路由協定更是蓬勃發展中。但是在目前已提出的隨意網路路由協定中,大部份的路由協定都是奠基於最短路徑演算法的概念。在隨意網路中,因為各節點可以任意行動,因此在封包傳送過程中可能發生接收節點已經離開傳送節點的傳輸範圍,因而導致封包在傳遞當中遺失。當此種情況發生時,要偵測出封包遺失需要等待一段長時間,才能重新開始封包傳遞的作業。在本文中,我們將提出一種新的路由協定,稱為隨意網路上的長時效性封包路由協定。
長時效性封包路由協定是一種混合式的路由協定,混合了表格驅動協定與傳送端要求協定的好處。在我們的通訊協定中,假設每個任意節點皆配備有全球定位系統的裝置,並且各節點會互相交換彼此的位置資訊。從接收到全球定位系統資料中可推測出各節點的位置及速度,藉由這些資訊,我們可以推測兩節點何時會離開彼此的傳送範圍,也就是兩節點間的殘餘時間。我們將殘餘時間做為路徑選擇時的參考依據,並找出有最大殘餘時間的路徑。同時,因為我們可以推測該路徑何時會失效,我們便可在路徑失效前找出新的路徑,以期讓封包傳輸過程不致於中斷。由測試結果可知,長時效性封包路由協定和最短路徑相比,可以有效地降低封包的平均傳輸延遲及封包遺失率。
Routing protocols have been widely studied in Ad-hoc networks. However, most of the Ad-hoc network routing protocols are based on shortest path algorithms. In Ad-hoc networks, due to the mobility of the transmitters and/or the receivers, a receiver can easily move outside of the power range of its transmitter and this causes the wireless link between the two mobile nodes to fail. When link failure occurs during a communication session, it costs a lot to detect that the shortest routing path is no longer feasible and to retransmit the lost packets.In this paper, we propose a new routing algorithm called the Maximal Lifetime Routing algorithm (MLR). MLR is a hybrid type of Ad-hoc network routing algorithm. Every mobile node in the Ad-hoc network periodically exchanges position information collected using Global Positioning System (GPS) devices with other nodes.
With the GPS information, the mobile nodes can estimate the velocity and the moving direction of other mobile nodes. Hence, the mobile nodes can estimate the life time of the wireless links. When a new routing path is needed, the source node finds the path that has the longest life time. Furthermore, MLR can predict when the current routing path will fail due to the mobility of the mobile nodes along the path and find an alternative routing path before the path failure. Simulation result shows that MLR can effectively reduce average packet transmission delay and packet lost rate comparing to shortest path routing algorithm.
1 Introduction
2 Previous and Related Works
3 Maximal Lifetime Routing
3.1 Basic Thoughts
3.2 Routing Algorithm
3.3 Route Maintenance
4 Simulation Results
4.1 Simulation Model
4.2 Simulation Results
5 Conclusions and Future Works
[1] Fcc adopt rules to implement enhanced 911 for wireless services. FCC News, June, 12 1996.
[2] B.Hofmann-Wallehnhof, H. Lichtenegger, and J. Collins. Global Position System: Theory and Practice. New York: Springer-Verlag, 1997.
[3] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A performance comparison of multi-hop wireless ad hoc network routing protocols. In The fourth annual ACM/IEEE international conference on Mobile computing and networking, 1998.
[4] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. McGraw-Hill Book Company, 1998.
[5] Samir R. Das, Robert Castaneda, and Jiangtao Yan. Simulation-based performance evaluation of routing protocols for mobile ad hoc networks. ACM Press, 5:179-189, 2000.
[6] Z.J. Haas. A new routing protocol for the reconfigurable wireless networks. In Universal Personal Communications Record, volume 2, pages 562-566, 1997.
[7] Philippe Jacquet and Thomas Clausen. Optimized link state routing protocol, March 2002. Internet draft, draft-ietf-manet-olsr-06.txt, work in progess.
[8] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Computing, 1996.
[9] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks. Wireless Networks, 2000.
[10] R.C.T. Lee, R.C. Chang, S.S. Tseng, and Y.T. Tsai. Introduction to the Design and Analysis of Algorithms. Flag, 2002.
[11] Mark Lewis, Fred Templin, Bhargav Bellur, and Richard Ogier. Topology broadcast based on reverse-path forwarding (tbrpf), March 2002. Internet draft, draft-ietf-manet-tbrpf-05.txt, work in progess.
[12] M. Mauve, A. Widmer, and H. Hartenstein. A survey on position-based routing in mobile ad hoc networks. IEEE Network, 2001.
[13] Julio C. Navas and Tomasz Imielinski. Geocast-geographic addressing and routing. In Proceedings of the third annual ACM/IEEE international conference on Mobile computing and networking, 1997.
[14] V.D. Park and M.S Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. In INFOCOM ''97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies, volume 3, pages 1405-1413, 1997.
[15] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In WMCSA ''99. Second IEEE Workshop, pages 90-100, 1999.
[16] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-vector routing (dsdv) for mobile computers. In Proceedings of the conference on Communications architectures, protocols and applications, 1994.
[17] Larry L. Peterson and Bruce S. Davie. Computer Networks (second edition). Morgan Kaufmann, 2000.
[18] E.M. Royer and Chai-Keong Toh. A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications, Volume: 6 Issue: 2:46-55, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文