跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張騰元
研究生(外文):Teng-Yuan Chang
論文名稱:網路學習社群中多代理人熱心行為之模擬
論文名稱(外文):A Multi-Agent Based Simulation of Benevolent Behaviors in A Web Based Learning Community
指導教授:楊錦潭楊錦潭引用關係
指導教授(外文):Jin-Tan Yang
學位類別:碩士
校院名稱:臺南師範學院
系所名稱:資訊教育研究所
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:102
中文關鍵詞:網路學習社群熱心代理人多代理人模擬
外文關鍵詞:Web-based learning communityBenevolent agentMulti-Agent Based Simulation(MABS)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:893
  • 評分評分:
  • 下載下載:165
  • 收藏至我的研究室書目清單書目收藏:6
本研究目的在於探討網路學習社群中,不涉及報酬的熱心學習者,在本身能力及學習目標允許之下,為其他同儕主動解決障礙或提供部分協助,類似此熱心行為能否提昇整體學習社群績效。
基於網路學習社群系統本身就具有高複雜度的情況,系統中個體學習者的熱心程度是難以用簡單的式子來表示,因此,本研究方法是應用熱心多代理人理念來模擬網路學習社群任務績效,其中多代理人的概念與人類社會的概念相當接近,因為多代理人系統中個體代理人彼此間會有社會或互動關係,彼此間透過溝通,及主動的各自達成個體目標,且能對社群中的事件作出合乎理性反應或是互相協調以達成社群目標,而產生特定的群體行為。本研究採用JADE(Java Agent Development Environment)系統作為開發環境,因為JADE提供多代理人系統平台。
本研究發現有三,即(I)個體學習者的熱心行為對群體績效達成率有正面影響;同時個體學習者熱心程度愈高,群體績效達成率也愈高,唯個體學習者熱心程度大於50%時,對群體績效的提升程度便日益縮小;(II)工作任務的最大完成時間會影響群體績效,當最大完成時間愈長時,系統的群體績效愈高,且最大完成時間延長至某一臨界值時,群體績效便達其最上限;(III)當個體學習者數量由2人逐步增加至12人時,群體績效亦隨之上升,唯當人數超過12後,群體績效反而下降。
本研究的發現可作為未來網路學習社群活動設計者的教學參考,網路學習社群中教師如何鼓舞學習者帶著熱心的情懷,以進一步提昇群體學習績效,是一項關鍵的教學議題。
The purpose of this study is to investigate the performance of a web-based learning community through multi-agent based simulations of benevolent behavior. An individual learner in learning community actively provides help or solutions for his/her peers under rationality. Can benevolent behavior of an individual learner in a simulated environment like distance education really promote the performance of a web-based learning community?
Due to the complexity of a web-based learning community involving cultural, economic, or political issues, it is difficult to express the degree of benevolent behavior of humanity in a simple mathematics equation. An individual agent in the multi-agent system can communicate with peers and make peers’ tasks done under its rationality. In other words, those agents in a simulated environment play social behaviors like human in a real environment. Therefore, the methodology of this study is to apply benevolent agents as behavior model to simulate the performance of a web-based learning community. The JADE(Java Agent Development Environment) system is adopted because it permits reuse of much existing code and self-configuration of large portions of the system.
The findings of this study have three results:
1. Benevolent agents can enhance the performance of their community. Furthermore, it is evident that the performance dramatically increases the percentage by degree of benevolence of agents compared with the no help environment.
2. In the maximum time, as a factor affecting the performance, to finish a job, the no help environment from another agents remains rather stable since the start, whereas the environment with benevolent behaviors impressively increases quite early and seems to become stable later on.
3. The performance of an amount of agents between 2 to 12 dramatically increases. In contrast, the amount of learners more learners than 12, their performances are worse off.
The findings of this study can be referenced for designers who concern pedagogical issues in web-based learning and training that impact on the potential for group learning. How to encourage learners with benevolent behaviors in a web-based community might be a critical pedagogical issue to achieve higher performance.
目次
第一章 緒論
第一節 背景與研究動機.................................. 1
第二節 研究目的........................................ 4
第三節 待答問題........................................ 5
第四節 名詞解釋........................................ 5
第五節 研究限制........................................ 6
第二章 文獻探討
第一節 網路學習........................................ 8
第二節 多代理人系統................................... 12
第三節 多代理人互動協定...............................23
第四節 多代理人系統的評估標準.........................31
第五節 熱心代理人 ...................................35
第六節 以模擬方式探究代理人間之社會行為...............40
第七節 在JADE平台上開發多代理人個案研究..............45
第三章 研究方法
第一節 研究工具....................................... 50
第二節 熱心代理人模型................................. 52
第三節 網路學習情境...................................55
第四節 實驗設計.......................................57
第四章 系統分析設計與建置
第一節 系統架構及運作情形 ...........................62
第二節 系統開發工具 .................................75
第五章 實驗結果與討論
第一節 熱心程度對群體平均完成率的影響 ...............78
第二節 最大完成時間對群體平均完成率的影響 ...........81
第三節 代理人數量對群體平均完成率的影響 .............83
第四節 結語 ........................................84
第六章 結論與建議
第一節 研究與結果摘要................................86
第二節 結論.........................................87
第三節 未來研究的建議................................88
參考文獻..............................................90
表次
表2-1多代理人系統分類表......................................14
表2-2 囚犯策略 vs. 刑期一覽表.................................32
表 2-3旅遊代理人行程安排結果細目表 ..........................46
表2-4 e-Learning系統之子系統一覽表............................48
表3-1 學習者各自分散的事實....................................56
表3-2 實驗內容摘要表..........................................58
表4-1 求助及協助運作實例......................................72
圖次
圖2-1代理人概念示意圖 .......................................12
圖2-2多代理人系統示意圖......................................13
圖2-3同質且互不溝通的環境.....................................15
圖2-4異質且互不溝通的環境.....................................17
圖2-5同質且互相溝通的環境.....................................19
圖2-6異質且互相溝通的環境.....................................20
圖2-7主從架構式協調機制示意圖.................................24
圖2-8黑板式協調機制示意圖.....................................25
圖2-9合約制協定中代理人協調過程...............................26
圖2-10決策函數範圍圖..........................................39
圖2-11以MAS模式化系統示意圖..................................40
圖2-12買賣代理人對話畫面 .....................................47
圖2-13 e-Learning系統架構圖 .................................48
圖3-1代理人元件關係圖.........................................51
圖3-2代理人的行為流程圖.......................................53
圖4-1管理程式使用個案圖.......................................62
圖4-2使用者界面...............................................63
圖4-3代理人模擬環境使用個案圖.................................64
圖4-4出題代理人 ..............................................64
圖4-5答題代理人 ..............................................66
圖4-6出題與答題代理人互動關係圖 .............................67
圖4-7模擬實驗進行畫面 ........................................67
圖4-8求助及協助過程狀態圖 ....................................70
圖4-9-1求助及協助過程示意圖 ..................................71
圖4-9-2求助及協助過程示意圖 ..................................71
圖4-9-3求助及協助過程示意圖 ..................................72
圖4-10代理人間互動溝通過程....................................74
圖4-11 JADE分散式代理人平台架構 ..............................75
圖4-12 JADE遠端管理代理人界面 ...............................77
圖5-1熱心程度與群體平均完成率關係圖 .........................79
圖5-2熱心程度與群體平均完成率關係圖(Tmax=10、Tmax=15)......79
圖5-3最大完成時間與群體平均完成率關係圖 .....................82
圖5-4最大完成時間與群體平均完成率關係圖(br=1.0、br=0.3)......82
圖5-5代理人數量與群體平均完成率關係圖.........................84
中文部分:
尹玫君、劉蓁蓁(民86)。遠距教學理論與文獻之探討。初等教育學報,10期,21-80頁。
呂益彰(民89)。網路學習社群於大學實施之實證研究─社群的使用、影響使用的因素及對學業成就的影響。淡江大學教育資料科學學系碩士論文。
吳斯茜、計惠卿(民88)。超越向度的網路學習社群。一九九九年中華民國比較教育學會年刊。
吳齊殷(民86)。真實社區與虛擬社區─交融、對立或互蝕。Available URL http://www.ios.sinica.edu.tw/SEMINAR/infotec2/吳齊殷.htm。
吳世弘(民88)。在信任第三者中介局中談判以協調代理人程式。清華大學資訊工程系博士論文。
林奇賢(民84)。遠距教學系統於國民小學之應用研究。國科會專案研究計畫。
林奇賢(民87)。全球資訊網輔助學習系統於國民小學之應用研究。台南:供學社。
林奇賢、林瓊如(民89)。智慧型虛擬人物在輔助網路學習上之應用研究。第四屆全球華人教育資訊科技大會論文集,新加坡。
林佩璇、黃政傑(民85)。合作學習。台北:五南。
林鴻源(民87)。線上測驗回饋型態對國小學童學習影響之分析研究。國立台南師範學院國民教育研究所碩士論文。
邱貴發(民85)。情境學習理念與電腦輔助學習─學習社群理念探討。台北:師大書苑。
邱貴發(民87)。網路世界中的學習:理念與發展。教育研究資訊。6 卷1 期, 20-27頁。
胡寶玉(民90)。非同步網路教學課程實施之個案研究。國立高雄師範大學成人教育研究所碩士論文。
張基成(民87)。教師專業成長網路學習社群的建立。迎接二十一世紀師資培育-教師專業知能的省思研討會論文集,130-140頁,淡水:淡江大學。
莊益瑞、陳德懷、李訓福(民89)。自治社群-一種網際網路上學習社群的組織模式。第四屆全球華人教育資訊科技大會論文集,新加坡。
梁書豪(民90)。以協商的方式推薦旅遊行程。清華大學資訊工程系碩士論文。
陳姚真(民89)。網路學習社群的建構與養成。Available URL http://pathfinder.ntntc.edu.tw/news/2000meeting/Chen.htm.
陳慶瀚(民89)。螞蟻的群體解題策略:一個分散式自動化的先期研究。2000年工業自動控制與電力應用研討會論文集,56-62頁,高雄。
陳慶瀚(民90)。仿螞蟻的群體機器人系統:模擬和分析突現式的群體智慧。第十二屆全國自動化科技研討會論文集光碟,雲林。
陳維鴻(民75)。霍布士自然權利理論研究。東海大學哲學研究所碩士論文。
陳岳宏(民89)。基因程式技術於螞蟻族群合作模式之研究。國立台南師範學院資訊教育研究所碩士論文。
區國良、陳國棟(民90)。教師代理人之知識與策略分析,資訊與教育,86期。
楊錦潭、蕭淳豐(民90)。開發智慧型代理人軟體工程平台初探。電子月刊。7卷11期。
楊錦潭、林錦泓、伍石能(民91)。多代理人為基礎之e-Learning系統-應用SCORM為課程物件組合。電子月刊。8卷4期(待出版)。
鄭海龍(民90)。在買賣代理人中引導解除對話的模糊。清華大學資訊工程系碩士論文。
蕭淳豐(民90)。網路教學平台下的訊息代理人實作。國立高雄師範大學資訊教育研究所碩士論文。
英文部分:
Abdulla, M. M. (2000). Benevolent Agents. Doctoral dissertation of University of South Carolina.
Anderson, J. R. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.
Axelrod, R. (1984). The Evolution of Cooperation, Basic Books.
Balch, T. & Arkin, R. C. (1995). Motor schema-based formation control for multiagent robot teams. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 10-16, Menlo Park, California, AAAI Press.
Barbuceanu, M. & Fox, M. S. (1995). COOL: A language for describing coordination in multi agent systems. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 17-24, Menlo Park, California, AAAI Press.
Blackmore, S. (1999). The Meme Machine, Oxford University Press Inc., New York.
Boczkowsk, P. J. (1999). Mutual Shaping of Users and Technologies in a National Virtual Community. Journal of Communication, 49(2), 86-108.
Bull, L., Fogarty, T.C., & Snaith, M. (1995). Evolution in multi-agent systems: Evolving communicating classifier systems for gait in a quadrupedal robot. In Proceedings of the Sixth International Conference on Genetic Algorithms, 382-388, San Mateo, California, Morgan Kaufman.
Bussmann, S. & Muller, J. (1992). A Negotiation Framework for Co-operating Agents, In Deen, S. M. (Ed.), Proc CKBS-SIG’, 1-17, Dake Centre, University of Keele.
Cammarata, S., McArthur, D. & Steeb, R. (1983). Strategies of Cooperation in Distributed Problem Solving, Proceedings of the 8th International Joint Conference on Artificial Intelligence, 767-770.
Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4, 7—27.
Castano, A., Shen, W. M., & Will, P. (2000). CONRO: Towards Deployable Robots with Inter-robot Metamorphic Capabilities, Auto Robots, 8(3), 309-324.
Castelfranchi, C. (1992). No More Cooperation, Please! In Ortony, A., Slack, J., & Stock, O. (Eds.), Search of the Social Structure of Verbal Interaction. Communication from an Artificial Intelligence Perspective, Springer-Verlag, Berlin, Germany.
Castelfranchi, C. (1998). Through the Minds of the Agents, Journal of Artificial Societies an Social Simulation, 1(1), The SimSoc Consortium, Department of Sociology, University of Surrey, Guildford, United Kingdom.
Cecconi, F. & Parisi, D. (1998). Individual versus social survival strategies, Journal of Artificial Societies an Social Simulation, 1(2), The SimSoc Consortium, Department of Sociology, University of Surrey, Guildford, United Kingdom.
Chen, G. T., Ou, K. L., Liu, C. C., & Liu, B. J. (2001). Intervention & strategy analysis for web group-learning. Journal of Computer Assisted Learning, 17(1), 58-71.
Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1-35.
Collins, A. & Bielaczyc, k. (1997). Dreams of technology-supported learning communities. In Proceedings of The 6th International Conference on Computer-Assisted Instruction, 1-8, Taipei : Taiwan.
Conte, R. & Pedone, R. (1998). Finding the Best Partner: The PARTNET System, In Sichman, J., Conte, R., & Gilbert, N. (Eds.), First International Workshop on Multi-Agent Systems and Agent-Based Simulation (MABS’98), Springer-Verlag, Berlin, Germany.
Corkill, D. D. (1979). Hierarchical Planning in a Distributed Environment, Proceedings of the 6th International Joint Conference on Artificial Intelligence, 168-179.
Dennis, A. R. (1998). Lessons from the Early Adopters of Web Groupware, Journal of Management Information Systems, 14(4), 65-86.
Durfee, E. H. & Lesser, V. R. (1987). Using Partial Global Plans to Co-ordinate Distributed Problem Solvers, Proceedings of the 10th International Joint Conference on Artificial Intelligence, 875-883.
Durfee, E. H., Lesser, V. R. & Corkill, D. D. (1987). Coherent Cooperation among Communicating Problem Solvers, IEEE Transactions Computing, 11, 1275-1291.
Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1989). Trends in Cooperative Distributed Problem Solving. IEEE Transation on Knowledge and Data Engineering, 1(1), 63-83.
Durfee, E. H. (1995). Blissful ignorance: Knowing just enough to coordinate well. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 406-413, Menlo Park, California, AAAI Press.
Edmonds, B. (2000). The Use of Models - making MABS more informative. In Moss, S. & Davidson, P. (eds.), (1979). Multi Agent Based Simulation 2000, Lecture Notes in Artificial Intelligence, 15-32.
Englemore, R. & Morgan, T. (Eds.), (1988). Blackboard Systems. Addison-Wesley, Mass.
Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social sciences from the bottom up. MIT Press, Cambridge.
Ferber, J. (1999). Multi-Agent Systems: An Introduction to distributed Artificial intelligence, New York: Addison-Wesley.
Ferber, J. & Drogul, A. (1992). Using Reactive Multi-Agent Systems in Simulation & Problem Solving. In Avouris, N. M., & Gasser, L. (Eds.), Distributed Artificial Intelligence: Theory & Praxis, 53-80, Kluwer Academic Publishers.
Finin, T. & Fritzson, R. (1994). KQML as an Agent Communication Language, 3rd International Conference on Information and Knowledge Management (CIKM94), ACM Press.
Foreman, S. K. (1999). Marketing: Marketing Organization and Virtual Communities, Manager Update, 11(1), 11-21.
Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic approach to collaborative multi-robot localization, Autonomous Robots,8(3).
Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on Programming Languages and Systems. 7(l).
Genesereth, M. R. & Fikes, R. E. (1992). Knowledge interchange format, version 3.0 reference manual. Technical Report Logic-92-1, Computer Science Department, Stanford University.
Gilbert, N. & Doran, J. E. (Eds.) (1994). Simulating Societies: The Computer Simulation of Social Phenomena. UCL Press, London.
Glance, N. S. & Hogg, T. (1995). Dilemmas in computational societies. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 117-124, Menlo Park, California, AAAI Press.
Goldman, C. & Rosenschein, J. (1994). Emergent coordination through the use of cooperative statechanging rules. In Proceedings of the Twelfth National Conference on Artificial Intelligence, 408-413, Philadelphia, PA, Morgan Kaufman.
Hagel III, J. & Armstrong, A. G. (1997). Net Gain: Expanding Markets Through Virtual Communities, Boston, MA: Harvard Business School Press.
Hara, (2000). Students’ Distress with a Web-based distance Education Course: An Ethnographic Study of Participants’ Experiences. Available URL http://www.slis.indiana.edu/CSI/wp00-01.html.
Harsanyi, J. C. (1977). Rational Behavior and Bargaining Equilibrium in Games and Social Situations, Cambridge University Press.
Hewitt, C. (1977). Viewing Control Structures as Patterns of Passing Messages, Artificial Intelligence, 8(3), 323-364.
Hogg, L. M. & Jennings, N. R. (1997). Socially Rational Agents, In Proc. AAAI Fall symposium on Socially Intelligent Agents, Boston, Mass., November 8-10, 61-63.
Holland, O. E. (1996). Multiagent systems: Lessons from social insects and collective robotics. In Adaptation, Co-evolution and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, 57-62, Menlo Park, CA, AAAI Press.
Huber, M. J. & Durfee, E. H. (1995). Deciding when to commit to action during observation-based coordination. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 163-170, Menlo Park, California, AAAI Press.
Huhns, M. N. & Stephens, L. M. (1999). Multiagent Systems and Socienties of Agents. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, Weiss, G. (Ed.), MIT Press, Cambridge, Massachusetts, USA.
Huhns, M. N. & Singh, M. P. (1995). A Mediated Approach to Open, Large-Scale Information Management. In Proceeding IEEE International Phoenix Conference on Computers and Communications.
Huhns, M. N. & Singh, M. P. (1998). Managing heterogeneous transaction workflows with cooperating agents. In Jennings, N.R. & Wooldridge, M. (Eds.), Agent Technology: Foundations, Applications and Markets, 219-239, Springer-Verlag: Berlin, Germany.
Huberman, B. & Clearwater, S. H. (1995). A multi-agent system for controlling building environments. In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), 171-176, Menlo Park, California, AAAI Press.
Jennings, N. R. (1990). Coordination Techniques for Distributed Artificial Intelligence, In O’Hare G M P and Jennings, N. R. (Eds.): Foundations of Distributed Artificial Intelligence, 187-210, Wiley Press.
Jennings, N. R., Faratin, P., Johnson, M. J., Norman, T. J., O’Brien, P., & Wiegand, M. E. (1996). Agent-Based Business Process Management. International Journal of Cooperative Information Systems , 5(2ſ), 105-130.
Jennings, N. R. & Campos, J. R. (1997). Towards a Social Level Characterization of Socially Responsible Agents, IEEE Proceedings on Software Engineering, 11-25.
Jin, Y. & Koyama, T. (1990). Multi-agent planning through expectation-based negotiation, Proceedings of the 10th International Workshop on DAI, Texas.
Johnson, D. W. & Johnson, R. (1996). Meaningful & Manageable Assessment Through Cooperative Learning. Edina, MN:Interaction Book Company.
Johnson, W. L., Rickel, J. W., & Lester, J. C. (2000). Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments. The International Journal of Artificial Intelligence in Education, 11, 47-78.
Kalenka, S. & Jennings, N. R. (1997). Socially Responsible Decision Making by Autonomous Agents. In Korta, K., Sosa, E., & Arrazola, X. (Eds.), Cognition, Agency and Rationality, Kluwer, 135-149.
Kohler, T. A. & Gumerman, G. J. (Eds.) (2000). Dynamics in human & primate societies: Agent-based modeling of social & spatial processes. Santa Fe Institute Studies in the Sciences of Complexity, Oxford University Press.
Korf, R. E. (1992). A simple solution to pursuit games. In Working Papers of the 11th International Workshop on Distributed Artificial Intelligence, 183-194.
Lesser, V. & Corkill, D. (1981). Functionally accurate, cooperative distributed systems, IEEE Transactions on Systems, Man and Cybernetics, 11(1), 81-96.
Levy, R. & Rosenschein, J. S. (1992). A game theoretic approach to the pursuit problem. In Working Papers of the 11th International Workshop on Distributed Artificial Intelligence, 195-213.
Lippitt, R. (1981). Humanizing planned changes. In Meltzer, H., & Nord, W. (Eds.), Making organizations humane and productive, a handbook for practitioners. 463-474. New York: Wiley.
Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceedings of the Eleventh International Conference on Machine Learning, 157-163, San Mateo, CA, Morgan Kaufman.
Liu, S. (1996). Applying Intelligent Agents in the Scanning and Interpretation of Strategic Data. TUCS Technical Report, No 85.
Lomuscio, A., Wooldridge, M., & Jennings, N. R. (2001). A Classification Scheme for Negotiation in Electronic Commerce. In Dignum, F. & Sierra, C. (Eds.), Agent-Mediated Electronic Commerce: A European AgentLink Perspective. Springer Verlag.
Maes, P. (1994). Agents that Reduce Work and Information Overload, Communications of the ACM, 71(7), 31-40.
McEwan, A. (1993). On becoming a sojourning community. Tallahassee, Florida:Florida State University. ERIC ED359914.
Mott, M.S. & Hodges, M. L. (1999). Case study research: Simulation of a graduate-level hypermedia for instruction web-based course. Paper presented at the fourth annual Teaching in the Community Colleges Online Conference, Honolulu, Hawaii.
Moukas, A. & Maes, P. (1997). Trafficopter: A distributed collection system for traffic information. Available URL http://trafficopter.www.media.mit.edu/
projects/trafficopter/.
Murphy, G., Walker, R., & Baniassad, E. (1999). Evaluating emerging software development technologies: Lessons learned from assessing aspect-oriented programming. IEEE Transactions on Software Engineering, 25(4), 438-455.
Ndumu, D. & Nwana, H. (1997). Research and Development Challenges for Agent-Based Systems. In IEE Proceedings on Software Engineering, 144(1).
Nickerson, R. S. (1993). On the distribution of cognition: some reflections. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations, 229-261, Cambridge: Cambridge University Press.
Nwana, H. S. (1994). Negotiation Strategies: An Overview, BT Laboratories internal report.
Nwana, H. S., Lee, L. C., & Jennings, N. R. (1996). Coordination in Software Agent Systems. The British Telecom Technical Journal, 14(4), 79-88.
Omicini, A. & Zambonelli, F. (1999). Tuple centers for the coordination of Internet agents. In Proceedings of the 1999 ACM symposium on Applied computing, 183-190, New York : USA.
Parunak, H. V. D. (1996). Applications of Distributed Artificial Intelligence in Industry. In O’Hare, G. M. P., & Jennings, N. R. (Eds.), Foundations of Distributed Artificial Intelligence, 139-164, Wiley.
Pedone, R. & Parisi, D. (1997). What Kinds of Social Groups can Altruistic Behavior Evolve? In Conte, R., Hegselmann, R., & Terno, P. (Eds.), Simulating Social Phenomena, Springer-Verlag, Berlin, Germany.
Pfister, H. R., Wessner, M., Holmer, T., & Steinmetz, R. (1999). Negotiating about Shared Knowledge in a Cooperative Learning Environment. In Hoadley, C. & Roschelle, J. (Eds.), Proceedings of the Computer Support for Collaborative Learning (CSCL) 1999 Conference, Dec. 12-15, Stanford University, Palo Alto, California. Mahwah, NJ: Lawrence Erlbaum Associates.
Rao, A. S. & Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. Proceedings of First International Conference on Multi-Agent Systems, San Francisco, CA, 312-319.
Rosenschein, J. S. & Genesereth, M. R. (1985). Deals Among Rational Agents, In Aravind, J. (Ed.), IJCAI-85, 91-95, Morgan Kaufmann Publishers.
Rosenschein, J. S. & Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for Automated Negotiation among computers, MIT Press, Cambridge, Massachusetts, USA.
Rosaria, C. & Scott, M. (1999). Special Interest Group on Agent-Based Social Simulation. Journal of Artificial Societies & Social Simulation, 2(1).
Rowstron, A.I.T. (1996). Bulk Primitives in Linda Run-Time Systems. Doctoral dissertation of University of York.
Roychowdhury, S., Arora, N., & Sen, S. (1996). Effects of local information on group behavior. In Adaptation, Coevolution and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, 78-83, Menlo Park, CA, AAAI Press.
Russel, S. & Norvig, P. (1995). Artificial Intelligence: A Modern Approach , New York: Prentice-Hall.
Ryan, S. (1994). The emergence of learning communities. In Wardman, K. T. (Ed.), Reflections on creating learning organizations, 95-105, Cambridge, MA: Pegasus Communications.
Sandholm, T. & Lesser, V. (1996). Advantages of a leveled commitment contracting protocol. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 126-133, Menlo Park, California, AAAI Press.
Sandholm, T. (1999). Distributed Rational Decision Making. Multiagent Systems: A Modern Introduction to Distributed Artificial Intelligence, Weiss, G. (ed.), MIT Press, Cambridge, Massachusetts, USA.
Sen, S. (1996). Reciprocity: a foundational principle for promoting cooperative behavior among self-interested agents. Proceedings ICMAS-96, 322-329, Kyoto, Japan.
Sen, S., Biswas, A., & Debnath, S. (2000). Believing others: Pros and Cons, In Proceedings of the Fourth International Conference on Multiagent Systems, 279-286.
Sichman, J. S. (1998). DEPINT: Dependence-Based Coalition Formation in an Open Multi-Agent Scenario. Journal of Artificial Societies an Social Simulation, 1(2), The SimSoc Consortium, Department of Sociology, University of Surrey, Guildford, United Kingdom.
Sichman, J. S., Conte, R., & Gilbert, N. (1998). MAS and Social Simulation: A Suitable Commitment. In Sichman, J. S., Conte, R., & Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based Simulation, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin-Alemanha, Germany.
Smith, R. G. (1980). The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers, C-29(12), 1104-1113.
Solomon, C. M. (1994). HR facilitates the learning organization concept. Personnel Journal, 73(11), 56-66.
Soo, V. W., Wu, S. H., Chen, S. Y., & Yang, S. Y. (1998). Adaptive Intelligent Tutor Agents in a Distant Education Environment, 1998 Workshop on Distributed System System Technology and Applications.
Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational Foundations. Pacific Grove, CA:Brooks/Cole.
Stephens, L. M. & Merx, M. B. (1990). The effect of agent control strategy on the performance of a DAI pursuit problem. In Proceedings of the 10th International Workshop on Distributed Artificial Intelligence, Bandera, Texas.
Stone, P. & Veloso, M. (1999). Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 110(2), 241-273.
Stone, P. & Veloso, M. (2000). Multiagent Systems: A Survey from a Machine Learning Perspective. Autonomous Robots, 8(3).
Stone, P. (2000). Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. In Intelligent Robotics and Autonomous Agents, MIT Press.
Sumpter, D. (2001). Honey bee simulation. Available URL http://www.maths.ox.ac.uk/~sumpter/beesim/Simulation/overview.html.
Sycara, K., Decker, K., Pannu, A., Williamson, M., & Zeng, D. (1996). Distributed intelligent agents. IEEE Expert.
Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the Tenth International Conference on Machine Learning, 330-337.
Troitzsch, K. G. (1997). Social science simulation - Origin, prospects, purposes. In Conte, R., Hegselmann, R., & Terna, P. (Eds.), Simulating social phenomena, Heidelberg: Springer.
Weihmayer, R. & Velthuijsen, H. (1994). Applications of distributed AI and cooperative problem solving to telecommunications. In Liebowitz, J. & Prereau, D. (Eds.), AI approaches to telecommunications and network management. IOS Press.
Wooldridge, M., Sycara, K., & Jennings, N. R. (1998). A Roadmap of Agent Research and Development. Autonomous Agents and Multi-agent Systems, 1, 275-306. Boston: Kluwer Academic Publishers.
Zambonelli, F., Jennings, N. R., Omicini, A., & Wooldridge, M. (2001). Agent-Oriented Software Engineering for Internet Applications. In Omicini, A., Zambonelli, F., Klusch, M., & Tolksdorf, R. (Eds.), Coordination of Internet Agents, 326-346, Springer Verlag.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top