跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃靖淑
研究生(外文):Ching-Shu Huang
論文名稱:國小中高年級學生數字感發展概況之探討
論文名稱(外文):An investigation of number sense development of elementary school children
指導教授:洪碧霞洪碧霞引用關係
指導教授(外文):Hung, Pi-Hsia
學位類別:碩士
校院名稱:臺南師範學院
系所名稱:國民教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:數字感數量估算作答時間
外文關鍵詞:number senseestimationreaction time
相關次數:
  • 被引用被引用:33
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:2
本研究希望了解國小四、五、六年級學生數字感發展的概況,同時企圖藉由電腦化數量估算評量工具的發展,針對數量估算的構念及其關連議題進行初步實徵的探討。本研究自行研發的電腦化數量估算評量包含認知與態度兩層面,反應時間也同時納入初步探討。研究中,擇取1600位國小四、五、六年級學生作為研究議題探討的常模依據,同時並擇取五年級29位資優及12位學習不利學生做為初步次群體差異探討的參照樣本。
研究中首先討論電腦化國小學生數量估算評量工具的心理計量特徵,藉由相關組型分析探討該工具的構念效度。常模樣本在數量估算評量二式平均答對概率為.45和.42,內部一致性為.62和.60,態度部分的內部一致性為.79,數量估算能力和態度得分相關為.24。數量估算評量與數學能力、在校數學成績和工作記憶之相關分別為.45、.38和.50。
研究中初步將數量估算評量分為四個難度層次,每個難度層次有九個試題,同時也將考生分為四個能力水準,其中低能力組約佔8%,他們的答題組型接近猜測,毫無數字感可言,中低能力組約佔50%,他們在難度層次一的平均答對率為.55,中高水準的學生佔30%,高能力組佔12%,他們在難度層次一的答對率分別為.75和.90。高能力組在層次二的平均答對率為.85,但層次三、層次四就未達精熟的水準,可見我國學童普遍缺乏自然情境中數字關連的覺察和運作經驗。
此外,本研究並探討數量估算表現和作答時間的相關,發現題目越難,高能力考生作答速度亦有漸慢的趨勢,但也只有高能力組學生對題目難度有較佳的後設覺察,會因應題目難度而調整自己的作答時間。整體而言,能力越高的學生作答速度越慢,低能力組每題作答時間低於20秒,高能力組則接近30秒,但高能力組中的傑出組工作記憶表現較優良組為佳,所用的作答時間也較短,傑出組比優良組平均快1.39秒。
本研究同時探討不同次群體間學生數量估算表現之差異,研究結果顯示四、五、六年級在數量估算表現有所差異,越高年級數量估算的表現越好,年級變項的eta square為7%;而在態度方面,年級間也有些微差異,男生的估算態度略優於女生,但解釋量只有2%左右。研究中同時以組間的對照,討論數量估算評量的區辨效益,資優班學生大幅優於常模,常模樣本表現亦明顯優於數學學習不利學生,學生類別變項的解釋力三倍於年級變項。本研究最後同時提出關於數量估算教學及未來研究的具體建議。
The purpose of this study is to investigate the performance of number sense of fourth, fifth and sixth graders. The operational definition of the construct and related topics of estimation were studied by a self-developed computerized estimation test(CET). This test contains cognitive and attitudinal parts. Reaction time was also analyzed. Around 1600 fourth, fifth and sixth graders were sampled as the norm. CET were also administered to 29 gifted children and 12 learning disabled fifth grade children those were selected as the comparison samples.
The empirical psychometric characteristics of CET were provided. For the cognitive tests, the average item passing rates were .45 and .42, and the coefficients of internal consistency were .62 and .60. For the attitudinal part, the coefficient of internal consistency was .79. The correlation coefficient between cognitive and attitudinal parts was .24. The correlation coefficients between CET and CAT Math, school math grades and working memory were .45, .38 and .50 respectively.
Four item difficulty levels and four achievement levels were adopted in this study. For the first level, the average passing rates were .20, .55, .75 and .90 for low-capability, middle-low-capability, middle-high-capability and high-capability
children respectively. For the third or fourth item difficulty level, no children master the estimation tasks. Our elementary children may lack awareness and exercise of numbers in daily life.
The correlation coefficient between estimation performance and reaction time was analyzed in this study. The result suggested the harder the CET item was, the longer time the most capable children spent. Metacogniton of the high-capability children was better.
This study also investigated estimation performance differnces between different subgroups. Grade difference was found for three grade groups. In attitudinal part, gender difference was found. Besides that, the differences of CET among three different mathematics achievement levels were analyzed. The CET could discriminate the gifted and learning disabled children very well. The recommendations for the instruction and future research of estimation were also provided.
第壹章 緒論
(一)研究動機………………………………………………………………1
(二)研究目的與待答問題…………………………………………………3
第貳章 文獻探討
第一節 數字感的構念……………………………………………………5
(一)數字感的意義…………………………………………………………5
(二)數字感與後設認知、學習信念及真實經驗的關連…………………13
第二節 數字感的評量及其相關議題……………………………………15
(一)數字感的評量…………………………………………………………16
(二)數字感評量中作答時間、後設認知及工作記憶的潛在關係………19
第參章 研究方法與步驟
(一)研究流程………………………………………………………………21
(二)研究樣本………………………………………………………………21
(三)研究工具………………………………………………………………25
(四)資料處理………………………………………………………………27
第肆章 結果與討論
第一節 國小學生數量估算評量的心理計量特徵………………………28
第二節 不同數量估算能力組別學生典型表現的探討…………………33
第三節 不同次群體間學生數量估算表現之差異………………………38
第伍章 結論與建議
(一)結論……………………………………………………………………44
(二)建議……………………………………………………………………45
王麗娟(民89)譯:數字感:1、2、3哪裡來。(譯自:Dehaene, S.
(1997). The Number Sense: How the Mind Creates
Mathematics.Oxford University Press.)。台北:先覺出版社。
支毅君(民86)。我國國小三年級數感教學研究。台東師院學報,8,83-
116。
杜宜展(民87)。國小數感教學之理論探究。教育資料文摘,41(1),80-
101。
李東霖(民90)。國小三年級學生工作記憶與數學學習關係之探討。國立
台南師範學院國民教育研究所碩士論文。
林清山、張景媛(民82)。國中後設認知、動機信念與數學解題策略之關
係研究。教育心理學報,26,53-74頁。
洪碧霞、邱上真、李東霖、蘇義翔、黃靖淑、秦麗花、陳韻純、張漢評、
黃珊紋(民89)。國小數學學習不利學童學習成長與工作記憶特徵之
探討(1/3)期中報告,行政院國家科學委員會,未出版。
洪碧霞、吳裕益、張秋芳、林素微、葉千綺(民85)。國民小學數學標準
參照測驗編製計劃結案報告。教育部。
徐俊仁(民90)。發展國小六年級學生數字常識能力之研究。國立嘉義大
學國民教育研究所碩士論文。
許清陽(民90)。國小高年級學童數字常識發展之研究。國立嘉義大學國
民教育研究所碩士論文。
張景媛(民83)。國中生數學學習歷程統整模式之驗証及應用:學生建構數
學概念的分析及數學文字題教學策略之研究。國立台灣師範大學教育
心理與輔導研究所博士論文。
張漢宜(民86)。數字感的重要性與教學。教育資料與研究,18,56-
60。
陳李綢(民81)。國小男女生後設認知能力與數學作業表現的關係研究。
教育心理學報,25,97-109頁。
楊德清(民86)。數學教育中目前大眾所關切之一個主題─數字常識。科
學教育月刊,200,12-18。
楊德清(民89)。數字常識與筆算能力。教師之友,41(2),30-35。
國立編譯館主編(民82)。國民小學數學課本,第八冊,改編本初版。
Aiken, L. R. Jr.(1960). Methaphobia and methemaphilla: an
analysis of personal and social factors affecting
performance in mathematics. Doctoral dissertation, The
University of North Carolina.
Australian Council for Educational Research. (1990). Profiles
of learning.Hawthorn:Australian Council for Educational
Research.
Baddeley, A. D. (1986). Working memory. Oxford: Oxford
University Press.
Bassarear, T. (1989). The dynamic interaction of cognitive and
non-cognitive factors in learning mathematics. Paper
presentedar the annual conference of the New England
Educational Research Organization, Portsmouth, NH.
Behr, M. J. (1989). Reflections on the conference. In J. T.
Sowder & B. P. Schappelle (Eds.), Establishing foundations
for research on number sense and related topics: Report of
a conference (pp. 82-84). San Diego: San Diego University,
Center for Research in Mathematics and Science Education.
Bower, B. (2001). Math fears subtract from memory, learning.
Science News, 159(26), 405.
Brown, A. L. (1987). Metacognition, executive control, self-
regulation and other more mysterious mechanisms. In F. E.
Weiner & R. H. Kluwe(Eds.), Metacognition, motivation, and
understanding. Hillsdale, N. J.: Erlbaum.
Bunderson, C. V., Inouye, D. K., & Olsen, J. B. (1989). The
four generations of computerized educational measurement.
In R. L. Linn(Ed.), Educational measurement. US: Macmillan
pubolishing company.
Burns, M. (1994). Arithmetic: the last holdout. Phi Delta
Kappan, 75, 471-476.
Case, R. & Sowder, J. T. (1990). The development of
computational estimation: a Neo-Piagetian analysis.
Cognition and Instruction, 7, 79-104.
Cockroft, W. H. (1982). Mathematics counts. London: Her
Majesty’s Stationery Office.
Dossey, J. A., Mullis, I. V. S., Lindquist, M. M., & Chambers,
D. L. (1988). The Mathematics Report Card: Trends and
achievement based on the 1986 National Assessment.
Princeton: Educational Testing Service.
Dougherty, B. J. & Crites, T. (1989). Applying number sense to
problem solving. Arithmetic Teacher, 36(6), 22-25.
Ekenstam, A. (1977). On children’s quantitative understanding
of numbers.Educational Studies in Mathematics, 8, 317-332.
Emanuelsson, G., & Johansson, B. (1997). Kommentar till
grundskolanskursplan och betygskriterier imatemailk[Non-
statutory guidance to the new Swedish curriculum of
mathematics]. Stockholm: Skolverket.
Fennema, E. & Sherman, J. (1976). Fennema-Sherman mathematics
attitude scales: Instruments designed to measure attitudes
toward the learning of mathematics by females and males.
Journal for Research in Mathematics Education, 7, 324-326.
Fennema, E. & Peterson, P. (1984). Classroom processes, sex
difference, and autonomous learning behaviors in
mathematics: Final report to the National Science
Foundation. SE 8-8109077. Washington, DC: National Science
Foundation.
Fennema, E., Franke, M. L., Carpenter, T. P. & Carey, D. A.
(1993). Using children’s mathematical knowledge in
instruction. American Educational Research Journal, 30, 555-
583.
Flavell, J. H. (1979). Metacognition and cognitive monitoring:
a new area of cognitive developmental inquiry. American
Psychologist, 34, 906-911.
Gagne, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The
cognitive psychology of school learning (2nd ed.). New
York, NY: Harper Collins College Publisher.
Hannafin, R. D. & Scott, B. N. (1998). Identifying critical
learner traits in a dynamic computer-based geometry
program. Journal of Educational Research, 92(1), 3-12.
Hembree, R. (1988). Correlates, causes, effects, and treatment
of test anxiety. Review of Educational Research, 58, 47-77.
Hiebert, J. (1989). Reflections after the conference on number
sense. In J. T. Sowder & B. P. Schappelle (Eds.),
Establishing foundations for research on number sense and
related topics: Report of a conference (pp. 82-84). San
Diego: San Diego University, Center for Research in
Mathematics and Science Education.
Hope, J. A. (1987). A case study of a highly skilled mental
calculator. Journal for Research in Mathematics Education,
18, 331-342.
Hope, J. A., & Sherrill, J. M. (1987). Characteristics of
unskilled and skilled mental calculators. Journal for
Research in Mathematics Education, 18(2), 98-111.
Hope, J. (1989). Prompting number sense in school. Arithmetic
Teacher, 36(6), 12-16.
Howden, H. (1989). Teaching number sense. Arithmetic Teacher, 36
(6), 6-11.
Japanese Ministry of Education. (1989). Curriculum of
mathematics for the elementary school. Tokyo: Printing
Bureau.
Just, M. A., & Carpenter, P. A.(1992). A capacity theory of
comprehension: individual differences in working memory.
Psychological Review, 99(1), 122-149.
Kamii, C. (1994). Young children continue to reinvent
arithmetic, 3rd grade. New York: Teachers College Press.
Kastner, B. (1989). Number sense: The role of measurement
applications. Arithmetic Teacher, 36(6), 40-46.
Klooterman, P. (1986). Attitudinal predictors of achievement in
seventh-grade mathematics. In G. Lappan & R. Even (Eds.),
Proceedings of the Eighth Annual Meeting of the North
American Chapter of the International Group for the
Psychology of Mathematics Education(pp.244-249). East
Lansing, MI: Michigan State University.
Lampert, M.(1990). Connecting Inventions with conventions. In
Steffe, L. P. & Wood T.(Eds.), Transforming children’s
mathematics education: international perspectives(pp.253-
265). Hillsdale, N. J.: Lawrence Erlbaum Associates.
Leder, G. C. (1987).Attitudes towards mathematics. In T. A.
Rombert & D. M. Stewart(Eds.), The monitoring of school
mathematics(Vol.2,pp.261-277). Madison: Wisconsin Center
for Education Research.
Liebert, R. M., & Morris, L. W. (1967). Cognitive and emotional
components of test anxiety: a distinction and some initial
data. Psychological Report, 20, 975-978.
Mack, N. K. (1993). Critical ideas, informal knowledge, and
understanding fractions. Unpublished paper.
Mandler, G. (1989). Affect and learning: causes and
consequences of emotional interactions. In Douglas B.
McLeod, & Verna M. Adams (Eds.), Affect and mathematical
problem solving: a new perspective(pp.3-19). New York:
Springer-Verlag.
Markovits, Z., Hershkowitz, R., & Bruckheimer, M. (1989).
Research into practice. Arithmetic Teacher, 36 (6), 53-55.
Markovits, Z., & Sowder, J. T. (1994). Developing number sense:
An intervention study in grade 7. Journal for Research in
Mathematics Education, 25(1), 4-29.
McIntosh, A., Reys, B. J., & Reys, R. E. (1992). A proposed
framework for examining basic number sense. For the
Learning of Mathematics, 12, 2-8.
McLeod, D. B. (1992). Research on affect in mathematics
education: a reconceptualization. In Douglas A. Grouws
(Ed.), Handbook of research on mathematics teaching and
learning(pp.575-595). New York: Macmillan.
Montague, M. (1995). Cognitive Instruction and Mathematics:
Implications for Students with Learning Disorders. Focus on
Learning Problems In Mathematics, 17(2), 39-49.
National Council of Teachers of Mathematics. (NCTM,1989).
Curriculum and Evaluation Standards for School Mathematics.
Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (NCTM,2000).
Principles and Standards for School Mathematics. Reston,
VA: National Council of Teachers of Mathematics.
Prestwood, J. S. (1978). Effects of knowledge of results and
varying proportions correct on ability test performance and
psychological variables. In D. Weiss(Ed.), Proceedings of
the 1977 computerized adaptive testing conference
(pp.105-115). Minneapolis: University of Minnesota.
Pike, C. D., & Forrester, M. A. (1997). The influence of
number—sense on children’s ability to estimate measures.
Educational Psychology, 17(4), 483-500.
Resnick, L. B. (1986). The development of Mathematical
Intuition. In Perlmutter, M., Perspectives on intellectual
development: the Minnesota symposia on child psychology
(Vol.19,pp.159-194). Hillsdale, N. J.: Lawrence Erlbaum
Associates.
Resnick, L. B. (1987). Education and learning to think.
Washington, DC: National Academy Press.
Resnick, L. B., Perla, N., Francois, L., Maria, M., Susan, O.,
& Irit, P. (1989). Conceptual bases of arithmetic errors:
the case of decimal fractions. Jourmal for Research in
Mathematics Education, 20, 8-27.
Reyes, L. H. (1984). Affective variables and mathematics
education. Elementary School Journal, 84, 558-581.
Reys, B. J. (1985). Mental computation. Arithmetic Teacher, 32
(6), 43-46.
Reys, B. J., & Barger, R. (1991). Developing Number Sense in
the Middle Grades.Addenda Series, Grades 5-8. Reston, VA:
National Council of Teachers of Mathematics.
Reys, R. E., Rybolt, J. F., Bestgen, B. J. & Wyatt, J. W.
(1980). Identification and characterization of
computational estimation processes used by in-school pupils
and out-of-school adults(Final Report, Grant No. NIE-79-
0088). Washington, DC: National Institute of Education.
(ERIC Doument Reproduction Service No. ED 197 963.).
Reys, R. E., & Bestgen, B. J. (1981). Teaching and assessing
computational estimation skills. Elementary School Journal,
82(2), 117-127.
Reys, R. E., & Nohda, N. (1992). Computational alternatives for
the twenty-first century. Reston, VA: National Council of
Teachers of Mathematics.
Reys, R. E., Suydam, M. N., & Lindquist, M. M. (1995a). Early
development of number sense and counting. In Helping
Children Learn Mathematics (pp.89-115). Reston, VA:
National Council of Teachers of Mathematics.
Reys, R. E., Suydam, M. N. & Lindquist, M. M. (1995b).
Developing number sense with numeration and place value. In
Helping children learn mathematics (pp.117-144). Reston,
VA: National Council of Teachers of Mathematics.
Reys, R. E., & Yang D. C. (1998). Relationship between
computational and number sense among sixth and eighth-grade
students in Taiwan. Journal for Research in Mathematics
Education, 29, 225-237.
Reys, R. E., Reys, B. J., McIntosh, A., Emanuelsson, G.,
Johansson, B., & Yang D. C. (1999). Assessing number sense
of students in Australia, Sweden, Taiwan, and the United
States. School Science and Mathematics, 99(2), 61-70.
Schoenfeld, A. H. (1985). Mathematical problem solving.
Orlando, FL: Academic Press.
Simon, H. A. (1982). Comments. In M. S. Clark & S. T. Fiske
(Eds.), Affect and cognition(pp.333-342). Hillsdale: NJ:
Lawrence Erlbaum.
Sowder, J. T. (1989). Affective factors and computational
estimation ability. In Douglas B. McLeod, & Verna M. Adams
(Eds.), Affect and mathematical problem solving: a new
perspective(pp.177-191). New York: Springer-Verlag.
Sowder, J. T. (1992a). Estimation and number sense. In Douglas
A.Grouws(Ed.),Handbook of research on mathematics teaching
and learning(pp.371-389). New York: Macmillan.
Sowder, J. T. (1992b). Making sense of numbers in school
mathematics. In G. Leihardt, R. Putnam, & R. A. Hattrup
(Eds.), Analysis of Arithmetic for Mathematics Teaching
(pp. 1-51). Hillsdale, NJ: Erlbaum.
Sowder, J. T., & Kelin, J. (1993). Number sense and related
topics. In Doug Owens (Ed.), Research ideas for the
classroom: middle grades mathematics. New York: Macmillan
Publishing Co.
Sowder, J., & Schappelle, B. (1994). Number sense-making.
Arithmetic Teacher, 41(2), 342-345.
Swedish Ministry of Education and Science. (1994). Syllabi for
the compulsory school. Stockholm: Author.
Thompson, C. S. & Rathmell, E. C. (1989). By way of
introduction. Arithmetic Teacher, 36(6), 2-3.
Thompson, C. S. (1990). Place value and larger numbers. In
Joseph N. Payne(Ed.), Mathematics for the young child(pp.89-
108). Reston, VA: National Council of Teachers of
Mathematics.
Threadgill-Sowder, J. (1989). Affective factors and
computational estimation ability. In Douglas B. McLeod, &
Verna M. Adams (Eds.), Affect and Mathematical Problem
Solving(pp.177-191).
TIMSS (1996). IEA’s Third International Mathematics and
Science Study. TIMSS Mathematics Item: Released Set for
Population 2. (Seventh and Eighth Grades).
Turner, B. (1996). A sixth grade teacher’s beliefs about her
students’ number sense. Unpublished paper. Department of
Curriculum and Instruction, University of Missouri.
Weiner, B. (1972). Attribution theory, achievement motivation,
and the educational process. Review of Educational
Research, 42, 203-215.
Wilson, K. M. & Swanson, H. L. (2001).Are mathematics
disabilities due to a domain-general or a domain-specific
working memory deficit? Journal of Learning Disabilities, 34
(3), 237-248.
Wong, P. S. K. (1989). Student’s metacognition in mathematical
problem solving. (ERIC Document Reproduction Service No.
ED. 328438).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top