跳到主要內容

臺灣博碩士論文加值系統

(3.229.117.123) 您好!臺灣時間:2022/08/12 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳雅婷
研究生(外文):YaTingWu
論文名稱:桂皮、牡丹皮單寧之分析方法開發及牡丹皮基原鑑定研究
指導教授:許順吉許順吉引用關係
指導教授(外文):Sheu Shuenn-Tyi
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:172
中文關鍵詞:單寧
外文關鍵詞:tannin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高效液相層析(HPLC)及毛細管電泳(CE)是目前最常用來測定中藥成分含量的分析方法。綜合兩者的優點,合併運用,可以拓展中藥化學評價的範疇。本研究以這兩種儀器開發桂皮、牡丹皮單寧酚的分析方法,並比較HPLC和CE兩分析方法的適用性及用為基原判別的工具。
單寧(tannins)為植物體內具收斂作用的物質,屬於多酚類化合物,一般指分子量500以上的類黃酮酚類化合物(flavonoid phenolic compounds)以網狀結構或氫鍵與蛋白質結合的物質,主要可分為縮合單寧(condensed tannins)與水解性單寧(hydrolysable tannins)二類。
本研究分二部分,第一部分為開發桂皮單寧的HPLC及CE分析方法。桂皮(Cinnamomum cassia Blume)為樟科植物的乾燥根皮,含1. (+) — catechin, 2. (-) — epicatechin, 3. Procyanidin B-1, 4. Procyanidin B-2,5. Arecatannin A1 ,6. Cinnantannin B2 ,7. Cinnantannin C2等七個桂皮縮合單寧成分。實驗結果顯示這七個成分可利用磷酸鹽沖提液、5C18-MS分離管柱及210nm偵測波長下,HPLC能於60分鐘內成功地分析這7個成分;用硼酸鹽、SC及異丙醇配製成緩衝溶液,在波長210nm條件下,利用MEKC分析模式,亦可在40分鐘內分析完成。在HPLC分析中,若要得到良好的基線,藥材萃取液須經適當的前處理;用CE分析時,則須加界面活性劑(SC)才有較好的解析度。
第二部分為開發牡丹皮單寧之HPLC及CE分析方法。牡丹皮是毛莨科植物(Paeonia suffruticosa Andrew)的乾燥根皮,以8個水解性丹皮單寧成分(1. 4,6-di-GG,2. 1,2,3,6-tetra -GG, 3. 1,2,3,4,6-pentra-GG, 4. 1,3,4,6-tetra-GG,5. 3,4,6-tri-GG ,6. 1,3,6-tri-GG ,7. 3,6-di-GG,8. 1,2,6-tri-GG)為指標,在磷酸鹽沖提液、5C18-MS分離管柱及以280nm為偵測波長,可在60分鐘內分析出8個成分;用硼酸鹽、SDS及異丙醇配製成緩衝溶液,在波長280nm條件下,利用MEKC分析模式,可在50min內分析完成。在HPLC分析中,樣品須經過前處理(Sep-Pak)才可得到良好的基線;用CE分析時,則須加界面活性劑(SDS)才有較好的解析度。
此外,本論文收集13批川丹皮(Paeonia suffruticosa)及10批西昌丹皮(P. delavayi),進行牡丹皮基原之化學辨識研究。結果發現西昌丹皮有八個明顯吸收峰,川丹皮的3,4,6-tri-GG(5)無法偵測;川丹皮單寧總含量為0.561 ± 0.065 mg/g,西昌丹皮則為1.390 ± 0.476 mg/g;川丹皮中PN/Pf的含量比為> 1,西昌丹皮則為< 1;川丹皮中3/2的含量比值小於11.4,西昌丹皮則大於15.2。根據以上數據,可做為辨識牡丹皮基原時的參考依據。

High performance liquid chromatography (HPLC) and capillary electrophoresis (CE) are currently the mostly popularly used analysis methods for assaying the constituents of Chinese herb drugs. By combining the superiorities of both methods, the scope of chemical appraisal of Chinese herb drugs can be expanded. This study is aimed to develop methods for analyzing the tannins of Cinnamomi Cortex and Moutan Cortex, whereby HPLC and CE are compared for their applicability and utility as tools in identifying botanical sources.
In plants, tannins are astringents, which belong to polyphenols, usually referring to those flavonoid phenolic compounds that have molecular weights over 500, and are bonded with protein through a reticular structure or hydrogen bonds. Tannins are chiefly divided into two categories, condensed tannins and hydrolysable tannins.
This study is divided into two parts. The first part deals with the development of HPLC and CE methods for analysis of tannins in Cinnamomi Cortex. Cinnamomi Cortex is the dried stem bark of the Lauraceous plant Cinnamomum cassia Blume, which chiefly contains seven condensed tannins, namely, 1. (+)-catechin, 2. (-)-epicatechin, 3. procyanidin B-1, 4. procyanidin B-2, 5. arecatannin A1, 6. cinnantannin B2, 7. cinnantannin C2. Experimental results show that the seven constituents can be successfully analyzed within 60 minutes, using HPLC with a phosphate eluent, a 5C18-MS column and a detection wavelength at 210 nm. The constituents can also be successfully analyzed within 40 minutes under the MEKC analysis mode with a buffer comprising borate, SC and isopropyl alcohol and a detection wavelength at 210 nm. In the HPLC analysis, the drug material has to be subjected to appropriate pretreatment in order to obtain a good baseline chromatograph. While in the CE analysis, a surfactant (SC) must be added to render good resolution.
The second part of the study deals with the development of HPLC and CE methods for analyses of the tannins in Moutan Cortex. Moutan Cortex is the dried root bark of the Ranunculaceous plant Paeonia suffruticosa Andrew. Using the eight hydrolysable tannins (1. 4,6-di-GG, 2. 1,2,3,6-tetra-GG, 3. 1,2,3,4,6-penta-GG, 4. 1,3,4,6-tetra-GG, 5. 3,4,6-tri-GG, 6. 1,3,6-tri-GG, 7. 3,6-di-GG, 8.1,2,6-tri-GG) in Moutan Cortex as the marker substances, the HPLC method with a phosphate eluent, a 5C18-MS column and a detection wavelength at 280 nm can accomplish the analysis within 60 minutes; and the MEKC method with borate, SDS, isopropyl alcohol and a detection wavelength at 280 nm can finish the analysis within 50 minutes. In the HPLC analysis, the test sample has to be subjected to appropriate pretreatment (Sep-Pak) in order to obtain a good baseline chromatograph, and in the CE analysis, a surfactant (SDS) has to be added to render a good resolution.
In addition, we have collected 13 samples of Szechuanese Moutan Cortex (from Paeonia suffruticosa) and 10 samples of Western Moutan Cortex (from P. delavayi) for chemical identification of herb sources. As a result, there are eight conspicuous peaks of corresponding tannins in Western Moutan Cortex, and there are only seven peaks in Szechuanese Moutan Cortex wherein the constituent 3,4,6-tri-GG (5) is undetectable. The total tannin content is 0.561 ± 0.065 mg/g in Szechuanese Moutan Cortex, and 1.390. ± 0.476 mg/g in Western Moutan Cortex. The greatest distinction between the two is that the PN/Pf ratio is greater than 1 in Szechuanese Moutan Cortex and less than 1 in Western Moutan Cortex; and that the 3/2 ratio is less than 11.4 in Szechuanese Moutan Cortex and larger than 15.2 in Western Moutan Cortex. The above data can be used for the identification of the herb sources of Moutan Cortex articles.

圖目錄…………………………………………………………II
表目錄……………………………………………………...….V
中文摘要……………………………………………………VIII
英文摘要………………………………………………...…….X
第一章 緒論
第一節 前言……………………………………………………………1
第二節 高效能液相層析………………………………………………2
第三節 毛細管電泳分析………………………………………………3
第四節 分析條件參數及適宜性之評估……………………………..10
第五節 毛細管電泳法和高效能液相層析法之比較………………..13
第二章 桂皮單寧酚之分析
第一節 桂皮單寧成分之高效能液相層析…………………………..15
第二節 桂皮單寧成分之毛細管電泳分析…………………………..47
第三章 牡丹皮單寧酚之分析
第一節 牡丹皮單寧成分之高效能液相層析………………………..66
第二節 牡丹皮單寧檢液之製備……………………………………..96
第三節 牡丹皮單寧成分之毛細管電泳分析………………………108
第四章 牡丹皮基原之化學辨識
第一節 前言…………………………………………………………128
第二節 實驗部分……………………………………………………136
第三節 結果與討論…………………………………………………139
第五章 結論……………………………………………………..……..149
參考資料………………………………………………………………158
附錄一 桂皮分析成分UV圖……………………………………164
附錄二 牡丹皮分析成分UV圖……………..…………….167
附錄三 粉末特徵圖………………………………….……………171
圖目錄
圖1-2-1 高效液相層析儀示意圖………………………………..…………..3
圖1-3-1 毛細管及其內部示意圖……………………………………………5
圖1-3-2 CE儀器之結構圖…………………………………………………..5
圖1-3-3 電滲流形成之示意圖…………………………………………..…..7
圖1-3-4 吸收峰的fronting與tailing示意圖……………………………..7
圖1-3-5 毛細管區帶電泳示意圖………………………………..……….….8
圖1-3-6 電動力學層析原理示意圖…………………………………………9
圖1-3-7 影響CE分析之各種參數………………………………..………..10
圖1-4-1 不對稱吸收峰示意圖………………..……..….………………….12
圖1-5-1 流型與相應的溶質區帶圖……………………………………..…14
圖2-1-1 桂皮植物之外觀圖…………………………………………..……16
圖2-1-2 桂皮藥材之外觀圖…………………………………………..……16
圖2-1-3 桂皮指標成分結構圖…...…………………………………...……21
圖2-1-4 使用不同分析管柱的桂皮分析圖譜………………………..……31
圖2-1-5 不同管柱與各成分k’值的關係圖……………………..…………32
圖2-1-6 不同管柱與各成分N值的關係圖….………………..…………..33
圖2-1-7 流動相A中磷酸鹽濃度與各成分k’值的關係圖……………….34
圖2-1-8 流動相A中磷酸鹽濃度與各成分N值的關係圖………………35
圖2-1-9 流動相A中不同酸鹼值與各成分k’值的關係圖……………….36
圖2-1-10 流動相A中不同酸鹼值與各成分N值的關係圖………………37
圖2-1-11 流動相B中氰甲烷/水比例與各成分k’值的關係圖……………38
圖2-1-12 流動相B中氰甲烷/水比例與各成分N值的關係圖……………39
圖2-1-13 不同萃取液之HPLC層析圖(1) …………………………………44
圖2-1-14 不同萃取液之HPLC層析圖(2) …………………………………45
圖2-1-15桂皮藥材之HPLC層析圖………………………………………..46
圖2-2-1 硼酸鹽濃度與遷移時間的關係…………………………………..57
圖2-2-2 pH值與遷移時間的關係…………………………………………58
圖2-2-3 異丙醇比例(v/v)遷移時間的關係………………………………..59
圖2-2-4 SC濃度與遷移時間的關係………………………………………60
圖2-2-5 桂皮單寧之電泳層析圖(1) ………………………………………64
圖2-2-6 桂皮單寧之電泳層析圖(2)……………………………………….65
圖3-1-1 牡丹皮植物之外觀圖……………………………………………..67
圖3-1-2 牡丹皮藥材之外觀圖……………………………………………..67
圖3-1-3 牡丹皮指標成分結構圖…………………………………………..71
圖3-1-4 牡丹皮用不同分析管柱的分析圖譜………………………..……82
圖3-1-5 不同管柱與各成分k’值的關係圖……………………..…………83
圖3-1-6 不同管柱與各成分N值的關係圖….………………..…………..84
圖3-1-7 流動相A中磷酸鹽濃度與各成分k’值的關係圖……………….85
圖3-1-8 流動相A中磷酸鹽濃度與各成分N值的關係圖………………86
圖3-1-9 流動相A中不同酸鹼值與各成分k’值的關係圖……………….87
圖3-1-10 流動相A中不同酸鹼值與各成分N值的關係圖………………88
圖3-1-11 流動相B中甲醇/水比例與各成分k’值的關係圖………………89
圖3-1-12 流動相B中甲醇/水比例與各成分N值的關係圖………………90
圖3-1-13 不同B相的丹皮單寧成分分析圖譜…………………………….94
圖3-1-14 牡丹皮藥材之HPLC層析圖…………………………………….95
圖3-2-1 牡丹皮指標成分結構圖…………………………………………..97
圖3-2-2 不同萃取液之牡丹皮分析圖譜(1) ……………………………..104
圖3-2-3 不同萃取液之牡丹皮分析圖譜(2) ……………………………..105
圖3-2-4 70%甲醇萃取液經不同Sep-Pak處理之牡丹皮分析圖譜…….106
圖3-2-5 各樣品之HPLC層析圖…………………………………………107
圖3-3-1 硼酸鹽濃度與遷移時間的關係…………………………………118
圖3-3-2 硼酸鹽濃度與各成分N值的關係圖…………………………..119
圖3-3-3 pH值與遷移時間的關係………………………………………..120
圖3-3-4 異丙醇比例(v/v)遷移時間的關係………………………………121
圖3-3-5 SDS濃度與遷移時間的關係…………………………………...122
圖3-3-6 SDS濃度與各成分N值的關係圖…………………………….123
圖3-3-7 牡丹皮之電泳層析圖……………………………………………127
圖4-1-1 牡丹皮Pf、PN指標成分結構圖………………………………134
圖4-1-2 (A)牡丹 (B)芍藥 (C)川赤芍 (D)朱砂植物之外觀圖…………135
圖4-3-1 川丹皮之組織切片(40X)………………………………………..140
圖4-3-2 西昌丹皮之組織切片(40X)………………….………………….140
圖4-3-3 (A)標準品(B)川牡丹皮(C)西昌牡丹皮之層析圖……………...145
圖4-3-4 藥材之成分含量統計圖………………………………………146
圖4-3-5 各藥材十成分平均含量雷達圖(1)………………………………147
圖4-3-6 各藥材五成分平均含量雷達圖(2)………………………………148
圖5-2-1 CE 與 HPLC 之流形示意圖………………………………….152
表目錄
表2-1-1 桂皮分析方法之梯度沖提程式……………….……….…………23
表2-1-2 分離管柱的種類及其材質表………………….……….…………24
表2-1-3 不同管柱與N值(N×104)的關係表…………….……….………..27
表2-1-4 不同管柱與Rs值的關係表…………………….………….……..27
表2-1-5 不同濃度磷酸鹽與各成分N值(N×104)的關係表………………28
表2-1-6 不同濃度磷酸鹽與Rs值的關係表………………….…….……..29
表2-1-7 不同酸鹼值與各成分N值(N×104)的關係表…………….……...29
表2-1-8 不同酸鹼值與Rs值的關係表……….……….………………….29
表2-1-9 不同氫甲烷/水比例與各成分N值(N×104)的關係表……………30
表2-1-10 不同氫甲烷/水比例與Rs值的關係表…….……………………..30
表2-1-11 桂皮單寧成分在210nm之檢量線……………………………….40
表2-1-12 桂皮單寧分析條件之再現性……………………………………..41
表2-1-13 桂皮單寧分析條件之回收率與偵測極限………………………..42
表2-1-14 桂皮藥材單寧成分定量結果……………………………………..42
表2-2-1 不同硼酸鈉濃度對解析度的影響………………………………..52
表2-2-2 不同pH值對解析度的影響………………………………………53
表2-2-3 不同有機修飾劑對解析度的影響………………………………..54
表2-2-4 不同異丙醇比例對解析度的影響……………..…………………54
表2-2-5 不同SC濃度對解析度的影響……………………………………55
表2-2-6 不同異丙醇比例對SC濃度與解析度之影響…………………..56
表2-2-7 桂皮各單寧成分在最佳條件下的檢量線………………………..61
表2-2-8 桂皮單寧分析條件之再現性………………………….………….62
表2-2-9 桂皮單寧分析條件之回收率、理論板數與偵測極限.………….62
表2-2-10 桂皮藥材單寧成分之定量結果…………………………………..63
表3-1-1 丹皮單寧分析方法之梯度沖提程式……………………………..73
表3-1-2 分離管柱的種類及其材質表……………………………………..74
表3-1-3 不同分析管柱與各成分N值(N×104)的關係表………..……….77
表3-1-4 不同分離管柱與Rs值的關係表……………………..………….78
表3-1-5 添加不同濃度磷酸鹽與各成分N值(N×104)的關係表……..…..79
表3-1-6 添加不同濃度磷酸鹽與Rs值的關係表……………..………….79
表3-1-7 不同酸鹼值與各成分N值(N×104)的關係表………..…………..80
表3-1-8 不同酸鹼值與Rs值的關係表……………………..……………..80
表3-1-9 不同甲醇/水比例與各成分N值(N×104)的關係表……………...81
表3-1-10 不同甲醇/水比例與Rs值的關係表…………….………………..81
表3-1-11 牡丹皮單寧成分在280nm之檢量線…………………………….91
表3-1-12 牡丹皮分析條件之再現性………………………………………..92
表3-1-13 牡丹皮單寧分析條件之回收率與偵測極限……………………..93
表3-1-14 牡丹皮藥材單寧成分定量結果…………..………………………93
表3-2-1 牡丹皮單寧分析方法之梯度沖提程式…………………………..98
表3-2-2 不同種類之溶劑萃取液與各成分之含量的關係表……………100
表3-2-3 不同種類之Sep-Pak與各成分之吸附率(%)的關係表…….101
表3-2-4 不同種類之沖提液與各成分之回收率(%)的關係表………102
表3-2-5 不同比例之甲苯沖提液與各成分之回收率(%)的關係表…103
表3-3-1 不同硼酸鈉濃度對解析度的影響………………………………113
表3-3-2 不同硼酸鈉濃度與各成分N值(N×104)的關係表………..……114
表3-3-3 不同pH值對解析度的影響…………………………………….115
表3-3-4 不同異丙醇比例對解析度的影響……………..………………..115
表3-3-5 SDS和SC與pH值對解析度的影響…………………………116
表3-3-6 不同SDS濃度對解析度的影響………………………………..117
表3-3-7 不同SDS濃度與各成分N值(N×104)的關係表………..……117
表3-3-8 牡丹皮成分以最佳條件做的檢量線……………………………124
表3-3-9 牡丹皮單寧分析條件之再現性………………………….……...125
表3-3-10 牡丹皮單寧分析條件之回收率、理論板數與偵測極限.………125
表3-3-11 牡丹皮藥材含量成分定量結果…………………………………126
表 4-1-1 牡丹皮正品之性狀………………………….…………………..128
表4-1-2 牡丹皮代用品之性狀……………………………...……………129
表4-1-3 牡丹皮偽品之性狀………………………….…………………..130
表4-1-4 牡丹皮正品與偽品之組織鑑定比較…………….…………….131
表4-1-5 牡丹皮正品與偽品之粉末鑑定比較…………….…………….132
表4-2-1 Pf、PN分析成分在280nm之檢量線………………………137
表4-2-2 Pf、PN分析條件之再現性……………………………………138
表4-2-3 Pf、PN分析條件之回收率與偵測極限………………………138
表 4-3-1 川丹皮與西昌丹皮之鏡檢比較………………………………...139
表4-3-2 西昌丹皮定量結果…………………..…………………………..141
表4-3-3 川丹皮定量結果…………………..……………………………..142
表4-3-4 牡丹皮基原之化學辨識…………………………………………143
表4-3-5 定量結果各成分含量之相對標準偏差RSD%………………...144
表5-1-1 HPLC與CE的比較……………………………………………..149
表5-2-1 桂皮單寧之HPLC和CE分析方法比較………………………151
表5-2-2 HPLC與CE操作時間(min)之比較…………………………151
表5-2-3 各成分以HPLC及CE分析時的理論板數(N×104)……………152
表5-3-1 牡丹皮藥材之HPLC和CE法比較…………….………………154
表5-3-2 HPLC與CE操作時間(min)之比較…………………………154
表5-3-3 各成分以HPLC及CE分析時的理論板數(N×104)……………155
表5-3-4 牡丹皮藥材萃取液之回收率(%)……………………………..155
表5-4-1 川丹皮、西昌丹皮之定量結果…………………………………..156
表5-4-2 牡丹皮基原之化學辨識(西昌丹皮vs.川丹皮)………………157

[1] M. Twett, Proc. Warsaw Soc. Nat. Sci. Biol., 1903, 14, 6.
[2] A. J. P. Martin and R. L. M. Synge, Biochem. J., 1941, 35, 1358.
[3] A. T. James and A. J. P. Martin, Analyst, 1952, 77, 915.
[4] E. Stahl, Chemiker-Ztg., 1958, 82, 323.
[5] J. F. K. Huber and J. A. R. J. Hulsman, Anal. Chim. Acta, 1967, 38, 305.
[6] A. Tiselius, Tran. Faraday Soc., 1937, 33, 524.
[7] S. Hjertén, Chromatogr. Rev., 1967, 9, 122.
[8] R. Virtanen, Acta Polytechnica Scand., 1974, 1, 123.
[9] F. E. P. Mikkers, F. M. Everaerts and Th. P. E. M. Verheggen, J. Chromatogr., 1979, 169, 11.
[10] J. W. Jorgenson and K. D. Lukacs, Anal. Chem., 1981, 53, 1298.
[11] S. Hjertén, J. Chromatogr., 1985, 347, 191.
[12] J. R. Mazzeo and I. S. Krull, BioTechniques, 1991, 10, 638.
[13] T. Wehr, LC-GC, 1993, 11, 14.
[14] A. S. Cohen and B. L. Karger, J. Chromatogr., 1987, 397, 409.
[15] A. S. Cohen, A. Paulus, and B. L. Karger, Chromatographia, 1987, 24, 15.
[16] A. S. Cohen, D. R. Najarian, A. Paulus, A. Guttman, J. A. Smith and B. L. Karger, Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 9660.
[17] H. Drossman, J. A. Luckey, A. Kostichka, J. D’Cunha and L. M. Smith, Anal. Chem., 1990, 62, 900.
[18] P. Bocek and A. Chrambach, Electrophoresis, 1991, 12, 1059.
[19] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Anal. Chem., 1984, 56, 111.
[20] S. Terabe, K. Otsuka and T. Ando, Anal. Chem., 1985, 57, 834.
[21] S. Hjertén, J. L. Liao and K. Yao, J. Chromatogr., 1987, 387, 127.
[22] D. J. Rose and J. W. Jorgenson, Anal. Chem., 1988, 60, 642.
[23] D. N. Heiger,〝高效毛細管電泳導論(中譯本)〞,中國惠普公司,北京,1993。
[24] T. Tsuda, 〝Handbook of Capillary Electrophoresis〞; J. P. Landers, ed. , Chapter 1, CRC Press, Boca Raton, 1997.
[25] H. Z. Helmholtz, Annal. Phys. Chem., 1879, 7, 337.
[26] K. Shibata, S. Iwata and M. Nakamura, Acta Phytochim., 1923, 1, 105.
[27] S. Hjertén and M. D. Zhu, J. Chromatogr., 1985, 346, 265.
[28] S. Hjertén and M. D. Zhu, J. Chromatogr., 1985, 327, 157.
[29] S. Hjertén and M. D. Zhu, Protides of the Biological Fluids, pp. 537-540, Oxford, New York, 1986.
[30] S. Hjertén, K. Elenbring F. Kilár, J. L. Liao, A. J. C. Chen, C. J. Siebert and M. D. Zhu, J. Chromatogr., 1987, 403, 47.
[31] E. M. Everaerts and P. E. M. Verheggen, New Directions in Electrophoretic Methods-Am. Chem. Soc. Symp. Vol. 335, J. W. Jorgenson and M. Phillips, ed., Chap. 4, American Chemical Society, Washington, D. C., 1987.
[32] J. W. Jorgenson and K. D. Lukacs, J. Chromatogr., 1981, 218, 209.
[33] J. W. Jorgenson and K. D. Lukacs, J. High Resoln Chromatogr. Chromatogr. Comm., 1981, 4, 230
[34] J. W. Jorgenson and K. D. Lukacs, Clin. Chem., 1981, 27, 1551.
[35] J. W. Jorgenson and K. D. Lukacs, Science, 1983, 222, 266.
[36] J. W. Jorgenson, Trends Anal. Chem., 1984, 3, 51.
[37] K. D. Altria and C. S. Simpson, Anal. Proc., 1986, 23, 453.
[38] T. Tsuda, J. High Resoln Chromatogr. Chromtogr. Comm., 1987, 10, 622.
[39] S. Terabe, K. Otsuka and T. Ando, Anal. Chem., 1989, 61, 25l.
[40] K. Otsuka and S. Terabe, J. Microcol. Sep., 1989, 1, 150.
[41] T. Tsuda, K. Nomura and G. Nakagawa, J. Chromatogr., 1982, 248, 241.
[42] M. J. Sepaniak and R. O. Cole, Anal. Chem., 1987, 59, 472.
[43] T. Balchunas and M. J. Sepania, Anal. Chem., 1988, 60, 1466
[44] M. Martin, G. Guiochon, Y. Walbroehl and J. W. Jorgenson, Anal. Chem., 1985, 57, 559.
[45] M. M. Bushey and J. W. Jorgenson, J. Microcol. Sep., 1989, 1, 125.
[46] A. Dobashi, T. Ono, S. Hara and J. Yamaguchi, J. Chromatogr., 1989, 480, 413.
[47] S. Terabe, H. Utsumi, K. Otsuka, T. Ando, T. Inomata, S. Kuze and Y. Hanaoka, J. High Resoln Chromatogr. Chromatogr. Commun., 1986, 9, 666.
[48] D. E. Burton, M. J. Sepaniak and M. P. Maskarinec, J. Chromatogr. Sci., 1987, 25, 514.
[49] 許鴻源、陳玉盤、許順吉、許照信、陳建志、張憲昌,〝簡明藥材學〞,第286頁,新醫藥出版社,台北,1985。
[50] Z. Zhu, Y. Fang, H. Fang, G. Liu, N. Li, Q. Hu, H. Chen and Y. Wang, Zhongcaoyao,1985,16, 316.
[51] A. Yuan, L. Tan, S. Wei, S. Kang and D. Jiang, Zhongcaoyao, 1984, 9, 127.
[52] K. Sagara, T. Oshima, T. Yoshida, Y. Tong, G. Zhang and Y. Chen, J. Chromatogr., 1987, 409, 365.
[53] A. W. Archer, J. Chromatogr., 1988, 447,272.
[54] S. Morimoto, G. Nonaka, I. Nishioka, N. Ezaki and N. Takizawa, Chem. Pharm. Bull., 1985, 33, 2281.
[55] S. Morimoto, G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1986, 34, 633.
[56] S. Morimoto, G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1986, 34, 643.
[57] A. Yagi, N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka and A. Koda, Chem. Pharm. Bull., 1980, 28, 1432.
[58] T. Nohara, I. Nishioka, N. Tokubuchi, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., 1980, 28, 1969.
[59] T. Nohara, N. Tokubuchi, M. Kuroiwa and I. Nishioka, Chem. Pharm. Bull., 1980, 28, 2682.
[60] T. Nohara, Y. Kashiwada and I. Nishioka, Phytochemistry, 1985, 24, 1849.
[61] C. Paovalo and M. U. Chulasiri, J. Food Prot., 1986, 49, 12.
[62] A. Koda, E. Katsuta, S. Watanabe and M. Mizuno, Nippon Yakurigaku Zasshi, 1970, 66, 366.
[63] M. Matsui and M. Asai, Shimadzu Hyoron, 1987, 44, 219.
[64] 行政院衛生署中醫藥委員會-中醫藥資訊網路-中醫行政-常用中藥http://www.ccmp.gov.tw/BASIS/htmlc/www/htmldoc/DDD/3-2.htm
[65] T. Okuda, K. Mori and M. Shiota, Yakugaku Zasshi, 1982, 102, 734.
[66] T. Okuda, K. Mori and M. Shiota, Yakugaku Zasshi, 1989, 102, 854.
[67] E. Haslam, Plant Polyphenols. Vagetable Tannins Revisited, Cambridge University Press, Cambridge 1989.
[68] 李美賢,〝稜果蒲桃之單寧成分及生理活性〞,台北醫學院藥學研究所博士論文,台北,1996.
[69] T. Tanaka, H. Fujisaki, G. Noaka and I. Nishioka, T. Nohara, N. Tokubuchi, M. Kuroiwa and I. Nishioka, Chem. Pharm. Bull., 1992, 28, 2682.
[70] A. Schofield, E. Hagerman and A. Harold, T. Nohara, N. Tokubuchi, M. Kuroiwa and I. Nishioka, J. Chemical. Ecologyl., 1998, 24, 1409.
[71] T. Okuda, T. Yoshida and T. Hatano, 〝Chemistry and Antioxidant Effects of Phenolics from Licorice, Tea and Composite and Labiate Herbs〞. Proceedings of Symposium, Food Phytochemicals for Cancer Prevention, Washington DC , American Chemical Society 1993.
[72] T. Okuda, T. Yoshida and T. Hatano, : Antioxidant Polyphenols in Oriental Medicine. Proceedings of 5th International Congress on Oxygen Radicals. (Yagi, K., ed.) Tokyo , Publication Center for Academic Societies , Japan 1993.
[73] T. Okuda, T. Yoshida and T. Hatano, J. Chem. Soc. Perkin Trans., 1982, 1, 9.
[74] T. Okuda, T. Yoshida, T. Mori and T. Hatano, Heterocycles., 1981, 15, 1323.
[75] T. Hatano, R. Kira, M. Yoshizaki and T. Okuda, Phytochemistry., 1986, 25, 2787.
[76] T. Okuda, T. Yoshida, M. Kuwahara, M. U. Memon and T. Shingu, Chem. Pharm. Bull., 1984, 32, 2165.
[77] T. Okuda, T. Yoshida, T. Hatano, K. Yazaki, R. Kira and Y. Ikeda, J. Chromatogr., 1986, 362, 375.
[78] T. Hatano, T. Yasuhara, M. Matsuda, K. Yazaki, T. Yoshida and T. Okuda, J. Chem. Soc. Perkin Trans., 1990, 1, 2735.
[79] E. Haslam, Chemistry of Vegetable Tannins, Academic Press, London 1966.
[80] T. Okuda, T. Hatano, I.Agata and S. Nishibe, Yakugaku Zasshi., 1986, 106, 1108.
[81] K. Herrmann, Archiv Pharmacol., 1960, 293, 1043.
[82] D. G. Roux, Phytochem., 1972, 11, 1219.
[83] D. H. Strumeyer and M. J. Malin, J. Agric Food Chem., 1975, 23, 909.
[84] W. D. Loomis and J. Battaile, Phytochem., 1966, 5, 423.
[85] H. I. Oh, J. E. Hoff, G. S. Armstrong and L. A. Haff, J. Agric Food Chem., 1980, 28, 394.
[86] R. Kumar and M. Singh, J. Agric Food Chem., 1984, 32, 447.
[87] R. Kumar and T. Horigome, J. Agric Food Chem., 1986, 34, 487.
[88] 李臺強,〝高樑單寧含量之遺傳及其與農藝性狀相關性之研究〞,國立中興大學農藝研究所碩士論文,台中,1988.
[89] 黃明星,〝中藥材之色層分析〞,國立台灣師範大學化學研究所碩博士論文,台北,2001.
[90] P. Lukkari, H. Vuorela and M. L. Riekkola, J. Chromatogr. A, 1993, 655, 317.
[91] 同〔23〕p. 62
[92] 許鴻源,〝中藥成分最近之研究〞p.5-6國立中國醫藥研究所出版,台北,1968.
[93] Y. Akada, S. Kawada and Y. Tanase, Yakugaku Zasshi, 1980, 100, 224.
[94] I. Kitagawa, M. Yoshikawa, K. Tsunaga and T. Tani, Shoyakugaku Zasshi, 1979, 33, 171.
[95] S. Arichi, M. Kubo, H. Matsuda, T. Tani, K. Tsunaga, M. Yoshikawa and I. Kitagawa, Shoyakugaku Zasshi, 1979, 33, 178.
[96] M. Harada, A. Yamashita and M. Aburada, Yakugaku Zasshi, 1969, 89, 1205.
[97] M. Harada, A. Yamashita and M. Aburada, Yakugaku Zasshi, 1972, 92, 750.
[98] 行政院衛生署中醫藥委員會-中醫藥資訊網路-中醫行政-常用中藥http://www.ccmp.gov.tw/BASIS/htmlc/www/htmldoc/DDD/3-2-005.htm
[99] 周全,〝牡丹皮有效成份之定量及牡丹酚衍生物之合成〞,國立台灣師範大學化學研究所碩碩士論文,台北,1982.
[100] 中國生草藥研究發展中心,〝現代草本中國藥材學〞上冊p.326 ,啟業書局,台北,1976.
[101] 閻文玫主編,〝中藥材真偽鑑定〞p.257-263 ,人民自生出版社,北京,1994.
[102] 中國藥品生物製品檢定所編,〝中國中藥材真偽鑑別圖典〞第二冊p.203-206 ,廣東科技出版社,1997.
[103] 毛文山、彥智慧、馬光民、劉生利編,〝中藥真偽鑑別〞p.576-580,陜西科學技術出版社,1996.
[104] 張貴君,〝常用中藥鑑定大全〞p.425-427,黑龍江科學技術出版社,1993.
[105] 行政院衛生署中醫藥委員會,〝中藥材品質管制-組織形態學鑑定〞,1999.
[106] S. Morimoto, G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1985, 33, 4338.
[107] H. Kawamoto, F. Nakatsubo and K. Murakami, Phytochem., 1995, 40, 1503.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top