跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 14:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳萬隆
研究生(外文):Wu Wang-Lung
論文名稱:胺型環氧樹脂硬化劑之合成與性質之評估
論文名稱(外文):An amine type of epoxy curing agent :Synthesis and properties
指導教授:許貫中許貫中引用關係
指導教授(外文):Hsu Kung-Chung
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:硬化劑醯亞胺介電性質難燃CNE
外文關鍵詞:curing agentsimidedielectric propertiesflame retardantCNE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用phthalimide經硝化反應生成4-nitro-phthalimide
(NPH)、以及由氫化反應生成4-amino-phthalimide(APH),為具有醯亞胺基結構的化合物並以此當作環氧樹脂之硬化劑,並經由IR、NMR、MS、EA等分析儀器確認其結構。以APH與商用硬化劑DDS、DDM使含磷環氧樹脂〔其由9,10-Dihydro-9-oxa-10-phosphaphenthrene (DOPO)和環氧樹脂(CNE,Cresol Novolac Epoxy Resin)反應而成〕硬化後製成試片(代號APHE、DDSE、DDME),經由DMA、TGA、DSC、阻抗分析、LOI等分析測試硬化後樹脂的熱學性質、機械性質、難燃性質與介電性質。
硬化的樹脂試片經過阻抗分析測試,在介電常數上的結果顯示APHE(3.08)<DDSE(4.03)<DDME(4.97),乃因APH具有醯亞胺結構,降低了樹脂分子間的交互作用,所以得到硬化樹脂的介電常數值最低,且當APH添加比例增加時,因增加了樹脂的交聯密度,使得其值愈低;由TGA分析得到在氮氣與空氣氣氛下5%和10%硬化樹脂的裂解溫度由高到低依序為APHE>DDSE>DDME,與DMA分析得到硬化樹脂的玻璃轉移溫度由高到低亦為APHE(140.97 ℃)>DDSE(133.25 ℃)>DDME(71.74 ℃),此因APH具有較剛硬的醯亞胺結構;在耐燃性質上,因為樹脂具有含磷的DOPO基團,所以各硬化樹脂LOI的測試值皆大於26,故顯示皆有不錯的阻燃特性。
此外,三種硬化劑(APH、DDS、DDM)與含磷環氧樹脂的硬化行為與硬化動力學分別經由DSC測試分析,並利用Kissinger與Ozawa方法計算,結果顯示促使環氧樹脂硬化的反應活化能,由低至高依序為DDME(50.04 KJ/mol)<DDSE(62.92 KJ/mol)<APHE(74.40 KJ/mol)。

This research has synthesized an imide-containing compound , 4-amino-phthalimide (APH) as a curing agent for epoxy resins. APH was synthesized from phthalimide by a nitration and a hydrogenation reaction. The structure of synthesized compound was characterized and confirmed by FTIR, 1H-NMR, 13C-NMR, MASS and EA spectra. The epoxy resins, i.e., CNE with DOPO cured by APH, DDM and DDS (APHE, DDME, DDSE). Both DDM and DDS are commercial curing agents. The mechanical, thermal, dielectric and flame retardant properties of the cured epoxy resins were evaluated and compared by DMA, TGA, DEA and LOI tests.
The impendence result shows that APHE exhibits the lowest dielectric constant followed by DDSE and DDME. This is because that APH contains imide groups, which reduce the interactions between polymer molecules themselves. The TGA result shows that APHE has higher degradation temperature and glass transition temperature than the other two cured resins, for the former’s chemical structure is more rigid. The LOI values of all tested samples are about 35, and are greater than 26, suggesting that all cured sample have good flame retardant property.
In addition, the curing behavior of each curing agent (APH, DDM, DDS) is investigated by DSC measurements. The result indicates that DDME requires the lowest reaction activation energy to cure the epoxy resin, followed by DDSE, and APHE.

第一章 緒論--------------------------------------------------- 1
1-1 前言------------------------------------------------------ 1
第二章 原理及文獻回顧----------------------------------------- 4
2-1 環氧樹脂的簡介-------------------------------------------- 4
2-1-1 環氧樹脂的種類---------------------------------------- 4
2-1-2 硬化劑的種類------------------------------------------ 6
2-1-3 環氧樹脂的硬化反應機制-------------------------------- 7
2-1-4 環氧樹脂的流變行為----------------------------------- 10
2-1-5 環氧樹脂的硬化動力學--------------------------------- 12
2-2 高分子的燃燒原理----------------------------------------- 14
2-2-1 燃燒過程--------------------------------------------- 14
2-2-2 高分子的燃燒機構------------------------------------- 15
2-2-3 高分子的難燃要素------------------------------------- 19
2-2-4 高分子的阻燃機制------------------------------------- 21
2-3 高分子的介電行為----------------------------------------- 23
2-3-1 介電常數--------------------------------------------- 23
2-3-2 極化作用--------------------------------------------- 25
2-4 發展近況------------------------------------------------- 26
2-4-1 含磷環氧樹脂的開發----------------------------------- 26
2-4-2 低介電材料的開發------------------------------------- 29
第三章 實驗與性質測試---------------------------------------- 32
3-1 藥品----------------------------------------------------- 32
3-2 反應裝置------------------------------------------------- 35
3-3 實驗儀器------------------------------------------------- 36
3-4 實驗步驟------------------------------------------------- 37
3-4-1 實驗流程--------------------------------------------- 37
3-4-2 硬化劑APH的合成-------------------------------------- 38
3-4-3 硬化動力學的探討------------------------------------- 41
3-4-4 試片製備--------------------------------------------- 42
3-5 性質測試------------------------------------------------- 43
3-5-1 FTIR分析--------------------------------------------- 43
3-5-2 NMR分析---------------------------------------------- 43
3-5-3 EA分析----------------------------------------------- 43
3-5-4 DSC分析---------------------------------------------- 43
3-5-5 TGA分析---------------------------------------------- 44
3-5-6 DMA分析---------------------------------------------- 44
3-5-7 阻抗分析--------------------------------------------- 44
3-5-8 限氧指數測試(LOI) ----------------------------------- 45
第四章 結果與討論-------------------------------------------- 47
4-1 硬化劑結構的鑑定與分析----------------------------------- 47
4-1-1 NPH的合成與鑑定-------------------------------------- 47
4-1-2 APH的合成與鑑定-------------------------------------- 53
4-2 硬化動力之分析------------------------------------------- 59
4-2-1 動力行為探討----------------------------------------- 59
4-2-2 硬化動力學之探討------------------------------------- 61
4-3 硬化條件------------------------------------------------- 68
4-4 硬化反應及程度------------------------------------------- 69
4-5 熱性質分析----------------------------------------------- 74
4-5-1 TGA分析---------------------------------------------- 74
4-5-2 DMA分析---------------------------------------------- 78
4-6 介電性質分析--------------------------------------------- 80
4-7 耐燃性質分析--------------------------------------------- 81
第五章 結論-------------------------------------------------- 83
第六章 參考資料---------------------------------------------- 85

1. C. S. Wang and J. Y. Shieh, “Phosphorous-Containing Epoxy
Resin for an Electronic Application”, J. Appl. Polym. Sci.,
1999,73, 353-361.
2. C. H. Lin, and C. S. Wang, “Novel Phosphorus-Containing
Epoxy Resins Part I. Synthesis and Properties”, Polymer,
2001, 42, 1869-1878.
3. C. S. Wang and J. Y. Shieh, “Synthesis and Properties of
Epoxy Resins Containing 2-(6-Oxid-6H-Dibenz(c,e)-(1,2)
Oxaphosphorin-6-yl)-1,4- Benzenediol”, Polymer, 1998, 39,
5819-5826.
4. J. Y. Shieh and C.S.Wang, “Synthesis of Novel Flame
Retardant Epoxy Hardeners and Properties of Cured
Products”, Polymer, 2001, 42, 7617-762.
5. Y. L. Liu, “Flame-Retardant Epoxy Resins from Novel
Phosphorus- Containing Novolac”, Polymer, 2001, 42, 3445-
3454.
6. 楊榮文 和 王春山, “低介電多氟基聚醯胺樹脂”, 工程科技通訊,
2000, 47, 39-44.
7. 王春山, “環氧樹脂簡介與最近之發展(一)”, 化工技術, 1994, 2
(10), 54-57. “環氧樹脂簡介與最近之發展(二)”, 2(11), 120-
123.
8. J. M. Barton, “The Application of Differential Scanning
Calorimetry (DSC) to the Study of Epoxy Resin Curing
Reaction”, Adv. In. Polym. Sci., 1985, 72, 111-154.
9. J. B. Enns and J. K. Gillham, ”Time-Temperature-
Transformation(TTT) Cure Diagram: Modeling the Cure Behavior
of Thermosets”, J. Appl. Polym. Sci., 1983, 28, 2567-2591.
10. J. K. Gillham and K. Wisanrakkit, “The Glass Transition
Temperature (Tg) as an Index of Chemical Conversion for a
High-Tg Amine/Epoxy System: Chemical and Diffusion-
Controlled Reaction Kinetics”, J. Appl. Polym. Sci., 1990,
41, 2885-2929.
11. K. D. Hadad, Epoxy Resins, Chemistry and Technology, 2nd
ed., Ed. A. C. May, New York , 1988.
12. H. J. Borchardt and F. Daniels, “The Application of
Differential Thermal Analysis to the Study of Reaction
Kinetics”, J. Am. Chem. Soc., 1957, 79, 41-46.
13. H. E. Kissinger, “Reaction Kinetics in Differential
Thermal Analysis”, Anal. Chem., 1957, 29, 1702-1706.
14. T. Ozawa, “A New Method of Analyzing Thermogravimetric
Data”, Bull. Chem. Soc. Jpn., 1965, 38, 1881-1886.
15. 沈永清, 張信貞, 莊學平 和 張榮述, “高分子難燃機構及原理”,
化工資訊, 1995, 9(2), 15-32.
16. 邱顯堂, “高分子物性”, 明文, 1998.
17. 李育德, 顏文義 和 莊祖煌, “聚合物物性”, 高立, 1997.
18. D. A. Kourtides, J.A. Parker, T. W. Grants, N. Bilow and M.
T. Hsu, Adhesive for Industries and Technology Conference,
California, June, 1980.
19. Y. L. Liu, G. H. Hsiue, Y. S. Chiu, R. J. Jeng and L. H.
Perng, “Phosphorous-Containing Epoxy for Flame Retardant.
I: Synthesis, Thermal and Flame-Retardant Properties”, J.
Appl. Polym. Sci., 1996, 61, 613-621.
20. 曾祥銘, “印刷電路板用化學品專題調查”, 工研院化工所, 1999.
21. J. G. Young and W. Onebuagu, “Synthesis and
Characterization of Di-disubstituted Phthalocyanines”, J.
Org. Chem., 1990, 55, 2155-2159.
22. G. M. Loudon, Organic Chemsitry, 3rd ed., The
Benjamin/Cummings Publishing Company, Inc., California,
1995.
23. L. F. Levy and H. Stephen, “The Preparation of 4-
Nitrophthalimide and Derivatives”, J. Chem. Soc., 1931, 79-
80.
24. C. S. Wang and C. H. Lin, “Novel phosphorus-Containing
Epoxy Resins. Part II: Curing Kinetics”, Polymer, 2000, 41,
8579-8586.
25. C. H. Wang and C. H. Lin, “Properties and Curing Kinetic
of Diglycidyl Ether of Biosphenol A Cured with a Phosphorus-
Containing Diamine”, J. Appl. Polym. Sci., 1999, 75, 1635-
1645.
26. E. Bryan, Chemistry and Technology of Epoxy Resins, Blackie
Academic & Professional, Glasgow, 1993.
27. R. A. Fava, “Differential Scanning Calorimetry of Epoxy
Resins”, Polymer, 1968, 9, 137-151.
28. C. S. Wang and J. Y. Shieh, “Synthesis and Properties of
Epoxy Resins Containing Bis(3-Hydroxyphenyl) Phenyl
Phosphate”, Eur. Polym. J., 2000, 36, 443-452
29. J. F. Rebek, Experimental Methods in Polymer Chemistry,
Wiley Press, New York, 1980.
30. N. Biolley, T. Pascal and B. Sillion, “Polyimide-Modified
Epoxy System: Time-Temperature-Transformation Diagrams,
Mechanical and Thermal Properties”, Polymer, 1994, 35, 558-
564.
31. E. Mertzel and J. L. Koeing, “Application of FT-IR and NMR
to Epoxy Resins”, Adv. In. Polym. Sci., 1986, 75, 73-112.
32. D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to
Spectroscopy, 2nd ed., Saunders Brace College Publishers,
New York, 1996.
33. Y. L. Liu, G. H. Hsiue, Y. S. Chiu and R. J. Jeng,
“Phosphorus Containing Epoxy for Flame Retardant II: Curing
Reaction of Bis-(3-Glycidyloxy) Phenylphosphine Oxide”, J.
Appl. Polym. Sci., 1996, 61, 1789-1796.
34. M. D. Ahau and W. K. Chin, “Syntheses, Structure
Characterizations, and Thermal Resistances of New Epoxy-
Imide Polymers”, J. Appl. Sci., Polym. Chem., 1993, 31,
1653-1658.
35. T. S. Wang, J. F. Yen and M. D. Shau, “Syntheses,
Structure, Reactivity, and Thermal Properties of Epoxy-Imide
Resin Cured By Phosphorylated Triamine”, J. Appl. Polym.
Sci., 1996, 59, 215-225.
36. C. S. Wang and M. C. Lee, “Synthesis and Properties of
Epoxy Resins Containing 2-(6-Oxid-6H-Dibenz(c,e)-(1,2)
Oxaphosphorin- 6-yl) 1,4-Benzenediol (II)”, Polymer, 2000,
41, 3631-3638.
37. M. R. Keenan, “Autocatalytic Cure Kinetics form DSC
Measurements: Zero Initial Cure Rate”, J. Appl. Polym.
Sci., 1987, 33, 1725-1734.
38. C. S. Wang and C. H. Lin, Synthesis and Properties of
Phosphorus Containing Polyarylates Derived from 2-(6-Oxid-6H-
Dibenz(c,e)- (1,2)Oxaphosphorin-6-yl)-1,4-Dihydroxy
Phenylene”, Polymer, 1999, 40, 4387-4398.
39. Y. L. Liu, G. H. Hsiue, R. H. Lee and Y. S. Chiu,
“Phosphorous- Containing Epoxy for Flame Retardant. Ⅲ:
Using Phosphorylated Diamines as Curing Agents”, J. Appl.
Polym. Sci., 1997, 63, 895- 901.
40. J. Urbanski, Handbook of Analysis of Synthetic Polymers and
Plastics, Halsted Press, New York, 1977.
41. 林慶炫, “新穎含磷難燃聚酯及環氧樹脂之合成、鑑定與性質分
析”,國立成功大學化工系博士論文, 1999.
42. 邱宏政, “含磷環氧樹脂與Melamine Phenol Novolac硬化劑之硬化
與性質之評估”, 國立成功大學化工系碩士論文, 2000.
43. 陳柏全, “含磷環氧樹脂硬化劑之合成與難燃性探討”, 國立成功大
學化工系碩士論文, 1999.
44. 陳道譯, “熱分析”, 渤海堂, 1992.
45. 謝正悅, 林慶炫 和 王春山, “非鹵素難燃電子材料-含磷環氧樹
脂”, 科學發展月刊, 2000, 28(11), 843-850.
46. 艾勒生.簡尼.保勒, 尼爾.理查.諾威基 和 道格拉士.艾瑞克.
伊加瑞, “用於層間介電體及基底塗層之低介電常數,低吸水性聚醯
亞胺及共聚醯亞胺”, 中華民國專利公報, 144382, 1989.
47. 安尼.金.聖克雷爾, 泰利.李.聖克雷爾 和 威廉.保羅.溫夫
利, “製備低介電常數之聚醯亞胺類之方法”, 中華民國專利公報,
144889, 1988.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top