跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉一賢
研究生(外文):Ye Yi-Shian
論文名稱:新行聚羧酸系強塑劑的合成與應用
指導教授:許貫中許貫中引用關係
指導教授(外文):Hsu Kung-Chung
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:羧酸系強塑劑迷你坍度坍度損失分子量反應物比例
外文關鍵詞:carboxylate-based superplasticizermini-slumpslump lossmolecular weightreactant ratio
相關次數:
  • 被引用被引用:15
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統混凝土為了提高工作度,必需添加多量的水,如此一來,雖然提高了工作度,卻因此降低了混凝土的強度。添加強塑劑能夠大幅降低需水量,得以拌製低水膠比、高流動性、高強度的混凝土。
本研究合成一種新型的聚羧酸系聚合物(PMAMP),作為混凝土強塑劑。PMAMP係以甲基丙烯酸(MAA)與2-丙烯醯胺-2甲基丙烷磺酸(AMPSA)為反應物,經自由基聚合反應而得。在實驗過程中,合成各種PMAMP,其MAA/AMPSA比例分別為1/4、2/3、1/1、3/2、4/1,重量平均分子量為2.5×104~4.1×105。拌製水泥漿(水灰比0.3),砂漿(水灰比0.42)和混凝土(水膠比0.42)。探討PMAMP的反應物比例和分子量對於各水泥質材料性質的影響。
從水泥漿的測試結果得知,隨著PMAMP的分子量增加,漿體的迷你坍度呈現先增後減的趨勢,在PMAMP分子量約為4~6×104時,漿體有最高的迷你坍度值;隨著MAA/AMPSA比例的增加,水泥漿體的迷你坍度趨勢亦是先增後減,在MAA/AMPSA=3/2~1/1時,漿體有最高的迷你坍度值。另外,在砂漿與混凝土也得到相似結果。比起商用的磺酸系強塑劑HPC1000,在同一配比下PMAMP需要較少的劑量即可達到相同的工作性,且具有較佳的坍度維持效果。

More water is usually added into concrete to achieve good workability, and this causes a decrease of the concrete strength. The addition of superplasticizers can reduce the water demand enormously and therefore make the resulting concrete with low water/binder ratio with improved workability and higher strength.
This thesis has synthesized a new carboxylate-based copolymer (PMAMP) as a concrete superplasticizer. PMAMP was prepared from methacrylic acid (MAA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPSA) through a free radical copolymerization. Experimentally, PMAMPS with different MAA/AMPSA ratios (i.e.,1/4,2/3,1/1,3/2,4/1) and different molecular weights (Mws) ranging from 2.5×104 to 4.1×105 were prepared. Cement pastes (W/C=0.3), mortars (W/C=0.42) and concrete (W/B=0.42), were made. The effects of the MAA/AMPSA ratio and Mw of PMAMP on the properties on cementitious materials were investigated.
The results of cement pastes indicate that as Mw is increased, the mini-slump of pastes increases first, reaches a highest value at Mw about 4~6×104, and then decreases afterwards. As MAA/AMPSA is increased, the mini-slump of pastes also increases first, reaches a maximum , and then decreases subsequently. Cement pastes with MAA/AMPSA= 3/2~1/1, show the highest slump values. The results of mortars and concretes are similar to those of cement pastes. Compared to the commercial sulfonate-based superplasticizer (HPC1000), PMAMP requires less amount to make concrete with same workability and shows better slump-retention effect.

第一章 前言-----------------------------------------------------------------------1
第二章 文獻回顧-----------------------------------------------------------------3
2.1 混凝土材料--------------------------------------------------------------3
2.1-1水泥的組成-------------------------------------------------------3
2.1-2混凝土的觀念進展----------------------------------------------4
2.1-3高性能混凝土材料性質----------------------------------------6
2.2 摻料對混凝土性質的影響------------------------------------------7
2.2-1摻料及強塑劑的定義------------------------------------------7
2.2-2強塑劑之種類---------------------------------------------------10
2.2-3強塑劑的作用機制---------------------------------------------14
2.3 強塑劑對混凝土材料的影響---------------------------------------19
2.3-1強塑劑的添加目的---------------------------------------------19
2.3-2強塑劑演化歷程------------------------------------------------20
2.3-3未來展望---------------------------------------------------------28
第三章 實驗部分---------------------------------------------------------------29
3.1 實驗材料---------------------------------------------------------------29
3.2 實驗儀器---------------------------------------------------------------32
3.3實驗方法----------------------------------------------------------------33
3.3-1聚合反應---------------------------------------------------------33
3.3-2水泥漿拌製------------------------------------------------------34
3.3-3水泥砂漿拌製---------------------------------------------------34
3.3-4混凝土拌製------------------------------------------------------34
第四章 測量原理與分析------------------------------------------------------39
4.1 強塑劑基本性質測定------------------------------------------------39
4.1-1固含量測定------------------------------------------------------39
4.1-2產率測定---------------------------------------------------------39
4.1-3分子量測定------------------------------------------------------39
4.1-4紅外光譜儀(IR)分析-----------------------------------------40
4.1-5核磁共振儀(NMR)測定--------------------------------------40
4.2 水泥漿物理性質測定------------------------------------------------41
4.2-1迷你坍度錐平均擴散直徑與坍度維持測試---------------41
4.2-2水泥漿黏度測試------------------------------------------------41
4.2-3凝結時間測試---------------------------------------------------41
4.3水泥漿物理性質測定-------------------------------------------------42
4.3-1水泥砂漿流度試驗---------------------------------------------42
4.3-2水泥砂漿抗壓強度試驗---------------------------------------42
4.4混凝土材料物理性質測定-------------------------------------------43
4.4-1坍流度測試------------------------------------------------------43
4.4-2抗壓強度測試---------------------------------------------------43
4.4-3超音波測試------------------------------------------------------43
第五章 結果與討論------------------------------------------------------------44
5.1強塑劑基本性質分析-------------------------------------------------44
5.1-1強塑劑合成分析------------------------------------------------44
5.1-2強塑劑化學光譜鑑定------------------------------------------46
5.1-3起始劑濃度與分子量關係------------------------------------50
5.2 PMAMP劑量對水泥質材料流動性之影響-----------------------52
5.2-1 PMAMP 劑量對水泥漿迷你坍度影響--------------------52
5.2-2 PMAMP 劑量對水泥漿黏度之影響-----------------------57
5.2-3 強塑劑劑量對水泥漿坍度損失之影響--------------------58
5.2-4強塑劑量對水泥砂漿流度影響------------------------------61
5.2-5強塑劑量對水泥砂漿抗壓強度影響------------------------62
5.3 AMPSA比例對混凝土材料性質之影響--------------------------65
5.3-1 AMPSA比例對水泥漿體流變性質影響-------------------65
5.3-2 AMPSA比例對水泥漿坍度維持影響----------------------68
5.3-3 AMPSA比例對水泥漿凝結時間影響----------------------71
5.4 PMAMP分子量對混凝土材料性質之影響-----------------------73
5.4-1 分子量對水泥漿迷你坍度之影響--------------------------73
5.4-2 PMAMP分子量對水泥漿坍度損失之影響---------------76
5.4-3強塑劑之分子量對水泥漿凝結時間之影響---------------78
5.4-4強塑劑分子量對水泥砂漿流動性之影響------------------80
5.5 PMAMP對混凝土性質影響-----------------------------------------81
5.5-1 PMAMP對混凝土工作度影響------------------------------81
5.5-2 PMAMP對混凝土硬固性質影響---------------------------83
第六章 結論---------------------------------------------------------------------87
第七章 參考資料---------------------------------------------------------------89
圖目錄
圖 2.1改良磺酸化木質素化學結構-----------------------------------------10
圖2.2 SNF化學結構式---------------------------------------------------------11
圖2.3 SMF化學式--------------------------------------------------------------12
圖2.4 壓克力酸鹽或共聚物分子結構--------------------------------------13
圖2.5 Polymer of Acrylic Ester製造流程圖--------------------------------14
圖2.6 水份被水泥粒子束縛--------------------------------------------------15
圖2.7 靜電排斥力作用--------------------------------------------------------16
圖 2.8 立體障礙排斥----------------------------------------------------------16
圖2.9 輸氣作用-----------------------------------------------------------------17
圖2.10 水披覆層環繞效應---------------------------------------------------18
圖2.11 添加SNF強塑劑之混凝土坍度損失------------------------------22
圖2.12 SNF與共聚物摻和使用之坍度損失圖----------------------------23
圖2.13 CAE與SNF坍度損失比較圖---------------------------------------24
圖2.14 SNF與CAE抗壓強度成長圖---------------------------------------24
圖2.15 SNF與PCE吸附機理比較-------------------------------------------25
圖2.16 PCA化學式-------------------------------------------------------------26
圖2.17 各種PCA結構簡圖---------------------------------------------------26
圖2.18 CA/CE比例對水泥漿流動性影響----------------------------------27
圖 3.1 迷你坍度錐-------------------------------------------------------------33
圖3.2 共聚合反應流程圖-----------------------------------------------------35
圖3.3 共聚合反應合成裝置示意圖-----------------------------------------36
圖3.4 實驗流程圖(一)---------------------------------------------------------37
圖3.5 實驗流程圖(二)---------------------------------------------------------37
圖3.6 實驗流程圖(三)---------------------------------------------------------38
圖3.7 實驗流程圖(四)---------------------------------------------------------38
圖5.1-1 PMAMP的化學分子式----------------------------------------------46
圖5.1-2 PMAMP之IR吸收光譜---------------------------------------------47
圖5.1-3 PMAMP之H1NMR光譜圖-----------------------------------------48
圖5.1-4 PMAMP之C13NMR光譜--------------------------------------------49
圖5.1-5 PMAMP 之C=O NMR光譜比較----------------------------------49
圖5.1-6 PMAMP中產物與進料所含AMPSA比例之關係--------------50
圖 5.1-7 PMAMP分子量與起始劑濃度關係圖---------------------------51
圖 5.2-1 A系列PMAMP劑量與水泥漿迷你坍度關係圖------------55
圖 5.2-2 B系列PMAMP劑量與水泥漿迷你坍度關係圖-------------55
圖 5.2-3 C系列PMAMP劑量與水泥漿迷你坍度關係圖-------------56
圖5.2-4 商用強塑劑劑量對水泥漿迷你坍度關係圖-------------------56
圖5.2-5 強塑劑劑量與水泥漿視黏度關係圖-----------------------------58
圖5.2-6 迷你坍度與時間關係圖(Sp:B5)-----------------------------------60
圖5.2-7水泥漿黏度對時間圖-------------------------------------------------60
圖5.2-8 強塑劑劑量與水泥砂漿擴散直徑關係圖(W/C=0.42)---------61
圖5.2-9強度影響(W/C=0.42 齡期3天)------------------------------------63
圖5.2-10強塑劑劑量對水泥砂漿抗壓強度影響(齡期7天)-------------63
圖5.2-11劑量對水泥砂漿抗壓強度影響(齡期28天)--------------------64
圖5.2-12水泥砂漿抗壓強度發展圖(Sp=0.5%)----------------------------64
圖5.3-1 AMPSA比例對水泥漿體流動性影響(Sp=0.2%)---------------67
圖5.3-2 AMPSA比例對水泥漿體流動性影響(Sp=0.5%)---------------67
圖5.3-3 AMPSA比例與水泥漿黏度關係圖--------------------------------68
圖5.3-4 AMPSA比例與水泥漿坍度損失圖(Mw:5×104)---------------69
圖5.3-5 AMPSA比例與水泥漿坍度損失圖(Mw:1.2×105)-------------70
圖5.3-6水泥漿黏度與時間關係圖(Sp=0.5%)-----------------------------70
圖5.3-7強塑劑種類與水泥漿凝結時間關係圖(Mw: 5×104)-----------72
圖5.3-8 強塑劑種類與水泥漿凝結時間關係圖(Mw: 1.2×105)-------72
圖5.4-1 PMAMP分子量與迷你坍度關係圖(Sp=0.2%)------------------75
圖5.4-2 PMAMP分子量與水泥漿視黏度關係圖(Sp=0.2%)------------75
圖5.4-3 PMAMP分子量與水泥漿視黏度關係圖(Sp=0.5%)------------76
圖5.4-4 B系列PMAMP分子量與水泥漿坍度損失關係圖-------------77
圖5.4-5 C系列PMAMP分子量與水泥漿坍度損失關係圖(Sp=0.2%)78
圖5.4-6 B系列PMAMP分子量與凝結時間關係圖(Sp=0.2%)---------79
圖5.4-7 C系列PMAMP分子量與凝結時間關係圖(Sp=0.2%)---------79
圖5.4-8 PMAMP分子量與水泥砂漿流動性的關係圖 ( Sp: B系列).-80
圖5.4-9 強塑劑分子量與水泥砂漿流動性的關係圖--------------------81
圖5.5-1 混凝土抗壓強度發展圖--------------------------------------------84
圖5.5-2 混凝土齡期與超音波速度圖--------------------------------------84
圖5.5-3 使用B5強塑劑之混凝土新拌性質照片(0分鐘)---------------85
圖5.5-4 使用C5強塑劑之混凝土新拌性質照片(0分鐘)---------------85
圖5.5-5使用C5強塑劑之混凝土新拌性質照片(60分鐘)-------------86
圖5.5-6 使用HPC1000強塑劑之混凝土新拌性質照片(0分鐘)-------86
表目錄
表2.1波特蘭水泥熟料之組成--------------------------------------------------3
表2.2 傳統混凝土與高性能混凝土材料差別------------------------------6
表2.3 ASTM C494 化學摻料型別及規範-----------------------------------8
表2.4 化學摻料對混凝土的影響---------------------------------------------9
表2.5 SNF與PCA的添加方式對混凝土坍度影響-----------------------21
表2.6 PCA化學結構對漿體性質影響---------------------------------------27
表3.1 聚合反應藥品清單-----------------------------------------------------29
表3.2 水泥、爐石、飛灰之化學成分及物理性質--------------------------30
表3.3 細骨材篩分析結果-----------------------------------------------------31
表3-4 粗骨材篩分析結果-----------------------------------------------------31
表3.5 合成PMAMP之代碼--------------------------------------------------35
表3.6 混凝土的配比組成-----------------------------------------------------36
表5.1-1合成強塑劑之代號、反應條件與物理性質------------------------45
表5.1-2 PMAMP的紅外光譜文獻值與測定值----------------------------47
表5.2-1 PMAMP與商用強塑劑劑量與水泥漿迷你坍度關係----------54
表5.4-1混凝土強塑劑用量與工作度表-------------------------------------82

第六章 參考資料
1. M. R. Rixom and N. P. Mailvaganam, Chemical Admixtures for Concrete, 2nd Edition, E & F. N. Spon, London, 1986.
2. H. R. Allcock, F. W. Lampe, “Contemporary Polymer Chemistry”, Prentice Hall, 1990.
3. 楊思廉, ”工業化學概論”, 高立, 1992.
4. G. Jolicoeur and M. A. Simard, “Chemical Admixture-Cement Interactions:Phenomenology and Physico-chemical Concepts”, Cement Concrete Composites, Vol. 20, pp.87-101, 1998.
5. 李釗、郭文田, ”強塑劑在高性能混凝土上的應用”, 高性能混凝土配比實作研討會, pp.19-43, 1998.
6. H. Okamura, “High Performance Concrete “ Report Concrete Lab. Dept. of Civil Engineering, University of Tokyo, 1991.
7. 林正喬, ”高性能混凝土使用於橋梁工程設計探討”, 高性能混凝土研討會論文輯, pp.121~140, 1993.
8. 蘇南, “廿一世紀TACON之配比設計”, 高性能混凝土配比設計實作, 1998.
9. I. Jwed, J. Skalny, “Hydration of Tricalium Silicate in the Presence of Fly-ash”, Material Research Society annual meeting, pp.60-70.
10. 陳聖達, ”化學摻料對混凝土材料性質的影響”, 國立台灣師範大學碩士論文, 1997.
11. R. Schonfeld and H. Dorr, “On The Combined Effect of Water Soluble Lignosulfonates and Carbonates on Portland Cement and Clinker Pastes, Mode of Action and Structure of the Hydration Products ”, Cement and Concrete Research, Vol.8, pp. 525-538, 1978.
12. M. R. Rixom and N. P. Mailvaganam, “Chemical Admixtures for Concrete”, London New York, pp.5-10, 1986.
13. V. S. Ramachandran, V. M. Malhotra, C. Jolicoeur, and N. Spiratos, “Superplasticizers : properties and application in concrete”, CANMET, pp.49-50, 1998.
14. M. R Rixom and N. P. Mailvaganam, “Chemical Admixtures for Concrete”, London New York, pp.13-14, 1986.
15. M. Collepardi, “Admixtures Use to Enhance Placing Characteristics of Concrete”, Cement Concrete Composites, Vol.20, pp. 103-112, 1998.
16. P. K. Mehta, “Concrete structure ,Material and Properties”, Prentice-Hall, New Jersey, 1993.
17. 蘇南、李偉卿, ”強塑劑經磁場處理對混凝土工作性之影響”, 強塑劑於混凝土應用, 台灣營建研究院叢書, 2001.
18. E. Nagele and U. Schneider, “From cement to hardened paste- an electrokinetic study”, Cement and Concrete Research, Vol. 19, pp. 978-986, 1989.
19. H. Uchikawa, S. Hanehara and D. Sawaki, “The Role of Steric Repulsive Forces in Paste Prepared with Organic Admixture”, Cement and Concrete Research, Vol.27, pp. 37-50, 1997.
20. 陳慶宏, ”強塑劑於高性能混凝土之效能評估”, 國立台灣師範大學化學系碩士論文, 2000.
21. I. Older and T. Becker, “Effect of Liquefying Agents on Properties and Hydration of Portland Cement and Tricalium Silicate Pastes”, Cement and Concrete Research, Vol.10, pp.321-331, 1980.
22. 黃兆龍, ”強塑劑的質與量對混凝土性質的影響”, 強塑劑於混凝土應用, 台灣營建研究院叢書, 2001.
23. 王欄勝, “水泥性質對強塑劑使用成效影響之研究”, 國立中央大學土木研究所碩士論文, 1994.
24. 黃兆龍,“混凝土性質與行為”, 詹氏書局, 1997.
25. M. Collepardi, "Superplasticizers and Air-Entraining Agents. State of the Art and Future Needs", Concrete Technology: Past, Present, and Future, SP-144, American Concrete Institute, Farmington Hills, Mich., pp 399-416, 1994.
26. 苗伯霖,“高性能混凝土原理、優點及用途”, 高性能混凝土研討會論文, 1992.
27. 黃兆龍,“混凝土減水緩凝劑管理採購策略之研究”, 中國土木水利季刊,第14卷第2期, pp.73-102.
28. 牧保峯, ”羧酸系強塑劑應用於混凝土”, 強塑劑於混凝土應用, 台灣營建研究院叢書, 2001.
29. V. Morin, F. C. Tenoudji, A. Feylessoufi and P. Richard, “Sperplasticizer effects on setting and structuration mechanisms of ultrahigh-performance concrete” Cement and Concrete Research, Vol.31, pp.63-71, 2001.
30. 郭文田、李釗, ”強塑劑對水泥材料水化及早期行為之影響”, 強塑劑於混凝土應用, 台灣營建研究院叢書, 2001.
31. K. Yamada, T. Takahashi, S. Hanehara and M. Matsuhisa, ” Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer”, Cement and Concrete Research , Vol.30, pp.197—207, 2000.
32. Donald L. Pavia, Gary M. Lapman, Geogre S. Kriz,”Spectroscopy”, Saunders College Publishing, 1996.
33. V. S. Ramachandran, V.M. Malhotra, C.Jolicoeur and N. Spiratos, “Superplasticizers: Properties and Applications in Concrete”, CANMET, pp.179, 1998.
34. E. E. Kathmann, L. A. White and C. L. McCormick, ” Water-Soluble Copolymers. 67. Polyelectrolytes of N-Vinylformamide with Sodium 3-Acrylamido -3-methylbutanoate, Sodium 2-Acrylamido- 2-methylpropanesulfonate, and Sodium Acrylate: Synthesis and Characterization”, Macromolecules, Vol.29, pp.5268-5272, 1996.
35. S. Yamaguchi, F. Tomosawa, M. Kimoshita and T. Yamamoto, “44th Cement Technology Conference Collection of Learned Paper”, pp.274—279, 1990.
36. N. P. Mailvagaman, “Factors Influencing Slump Loss in Flowing Concrete”, Superplasticizers in concrete, pp.649-672, 1979.
37. V. S. Ramachandran, “Effect of Retarders/Water Reducers on Slump Loss in Superplasticized Concrete“, Superplasticizers in Concrete, pp.393-407, 1979.
38. G. G. Lim, S. S. Hong, D. S. Kim, B. J. Lee and J.S. Rho, ”Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant”, Cement and Concrete Research, vol.29, pp.223—229, 1999.
39. M. R. Rixom and N. P. Mailvaganam, “Chemical Admixtures for Concrete, F.N.Spon, New York, 1986.
40. H. Uchikawa, S. Hanehara and D. Sawaki, “Role of Steric Repulsive Force in the Dispersion of Cement Particles in fresh Paste Prepared with Organic Admixture,” Cement and Concrete Research, Vol.27, No.1, pp.37-50, 1997.
41. C. Jolicoeur and M. A. Simard, Chemical Admixture-Cement Interactions: Phenomenology and Physico-Chemical Concepts, Cement Concrete Composites, Vol.20, pp. 87-101, 1988.
42. P. J. Andersen and D. M. Roy, ”The Effect of Superplasticizers Molecular Weight on It Adsorption, and Dispersion of Cement”, Cement and Concrete Research, Vol,18, pp.980-986, 1988.
43. B. G. Kim, S. P. Jiang and P. C. Aitcin, “Influence of Molecular Weight of Polynapthalene Sulfonate Superplasticizers on The Properties of Cement pastes Containing Different Alkali Content”, Proceedings of International Symposium on the Role of Admixtures in High Performance Concrete, Monterrey, Mexico, pp.97-111, 1999.
44. B. G. Kim, S. P. Jiang and P. C. Aitcin, “Effect of Sodium Sulfate Addition on The Properties of Cement pastes Containing Different-Molecular-Weight PNS Superplasticizer”, Proceedings of 6th CANMET/ACI International Conference On Superplasticizers and Others Chemical Admixtures in Concrete, Nice, France, 2000, pp.485-504.
45. M. Moukwa, D. Youn and M. Hassanali, “Effect of degree of polymerization of water soluble polymer on concrete properties”, Cement and Concrete Research, Vol. 23, pp. 122-130, 1993.
46. 廖東昇, ”優生水中混凝土在工程性質之研究”, 國立台灣工業技術學院營建工程技術研究所碩士論文, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top