跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王乙婷
研究生(外文):I-Ting Wang
論文名稱:1.氧+乙烷及氧+氨之反應動力學abinitio/RRKM計算2.金剛烷面選擇性之計算研究
論文名稱(外文):1.The ab initio/RRKM calculations of O + C2H6 and O+ NH3 reactions2.A computational study of face selectivity of a reaction for adamantane derivatives
指導教授:孫英傑孫英傑引用關係
指導教授(外文):Ying-Chieh Sun
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:反應動力學
外文關鍵詞:reactionkineticoxygenammonia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用ab initio/RRKM之計算方法研究O(1D)與乙烷及氨在交叉分子束無碰撞環境下的反應,研究其可能發生的反應機制及路徑,產生各種產物,進而計算並得出各種產物之產率。我們利用反應經由插入之反應機制來計算各種產物生成之相關產率,在O(1D)+C2H6反應中,經由理論計算出H、H2、OH、CH3及H2O之產率分別為4.4、0.8、7.9、60.1及26.8 %,而在O(1D)+NH3反應中,H、OH、H2O及H2之產率則分別為6.7、86.8、6.4及0.1 %,而O(1D)+C2H6反應之H、H2、OH及CH3之產率計算結果與實驗值3、2、25及70 %有很好的一致性,然而在O(1D)+NH3反應方面,H及OH之產率亦與實驗值10及90 %相符。除此之外,實驗中兩個反應皆無觀察到水分子的存在,此乃因水分子在實驗中不易偵測,且在OH自由基方面之理論計算結果較實驗值小。由計算結果得到在O(1D)+C2H6反應中,水分子之產率佔有26.8 %,顯示出水分子在此反應中是一個很重要的次產物,而在O(1D)+NH3反應中,水分子所佔的百分比僅6.4 %。因為水分子之產生主要來自於OH自由基與一個beta氫原子結合而來,由此建議當O插入小烷類衍生物形成醇類並擁有beta氫原子時,水分子是不可忽視的產物。除此之外,理論計算之OH自由基產率與實驗值比較的結果,會發現值稍小些,其可能的原因是在計算產率時我們只考慮插入之反應機制,此結果建議經由拔取反應所產生之OH自由基亦是不可忽視的,除此之外,經由其它反應路徑產生各種不同產物之速率常數探討,我們將於討論部份詳述之。
除了上述研究外,我們亦利用半經驗及ab initio的量子力學理論計算方法研究4,9-substituted-2-dicyanomethyleneadamantanes及還原劑LiAlH4反應之p面選擇性,所探討的取代基包含-F、-Cl及-Br,結果顯示所有取代基化合物皆較易進行syn的反應,此外,我們利用研究反應物之雙面角性質來分析結果, 發現在此反應中,p面選擇性與反應物之雙面角有很好的定性關係,此結果顯示立體效應對於p面選擇性之syn/anti產物比例有著重要的影響。

The O(1D)+C2H6 and NH3 reactions have been studied using ab initio/RRKM calculation to investigate possible formation mechanisms of various products in molecular beam collision-free environment. The calculations of relative branching ratios for various products formed through the insertion mechanism were carried out. The calculations for the O(1D)+C2H6 reaction gave the percentages of 4.4, 0.8, 7.9, 60.1, and 26.8 for the H, H2, OH, CH3, H2O formation channels, respectively. In the O(1D)+NH3 reaction, the percentages are 6.7, 86.8, 6.4 and 0.1 for the H, OH, H2O, H2 formation channels, respectively. For the O(1D)+C2H6 reaction, the calculated results are in good agreement with available experimental results of 3, 2, 25, and 70 % for the first four species above. In O(1D)+NH3 reaction, the calculated results are also in good agreement with available experimental results of 10 and 90 % for H and OH radicals. It is noted that the calculations underestimated the branching ratio for OH formation channel and predicted a significant amount of water molecules to be formed in the O(1D)+C2H6 reaction. H2O was not observed due to its low detective in experiment. But for O(1D)+NH3 reaction, the water formation channel only take 6.4 % out total reaction channels. Because the water molecular is mainly formed by the OH and a beta H, this suggests that H2O will be an unnegligible product in the reactions of O + simple alkane derivatives which have a beta H. The lower calculated value for OH product compared with experimental result may be because that only the insertion mechanism is considered in the calculations. This underestimated result is compensated by the contribution from the abstraction channel. Reaction rates of all detail elementary reactions to produce various products described above are reported and discussed.
The p-facial selectivity of 4,9-substituted-2- dicyanomethylene- adamantanes with LiAlH4 reaction was examined using semiempirical and ab initio calculation. The substituents investigated include —F, -Cl and —Br groups. The reaction for all substitutents favor syn attack. We examined dihedral angles of the reactant to and found it correlated well with p-facial selectivity in this reactions. The present calculated results suggest that the stereo effect can affect the syn/anti product ratio significantly in the p-facial selectivity.

第一篇、氧+乙烷及氨之反應動力學ab initio /RRKM計算………………..…..………………………………..……........1
第一章、緒論……………………………………………...…………….……1
1-1、簡介………………………………………………………………….1
1-2、研究目標…………………………………………………………….1
第二章、計算理論原理及方法………………………………….……….10
2-1、計算理論原理……………………………………………………...10
2-1.1、密度泛函理論(Density functional theory, DFT)…………...10
2-1.2、組態交互作用法(Configuration Interaction,CI)…………..15
2-1.3、變分過渡狀態理論
(Varitational Transition State Theory, VTST)…………...18
2-1.4、RRKM理論
(Rice-Ramsperger-Kassel-Marcus Theory)…………....20
2-2、計算方法…………………………………………………………...24
2-2.1、ab initio計算…………………………………………………..24
2-2.2、RRKM 計算…………………………………………………..25
第三章、計算結果與討論……………………………………..………….27
第一部份、氧+乙烷反應之動力學ab initio/RRKM計算……..…..27
A、斷鍵部份之能量及結構的探討……………………………………..28
B、斷鍵部份之產率與鍵能的關係……………………………………..34
C、OH channel……………………...……..……………………………35
D、H2 channel…………………………………………………………...36
E、H2O channel…………………………………………………………37
F、CH3 channel與H2O channel之討論……………………….………39
第二部份 氧+氨反應之動力學ab initio/RRKM計算………..…..53
A、斷鍵部份之能量及結構探討………………………………………..54
B、OH channel………………………………………………………….59
C、H2及H2O channel…………………………………………………..61
第四章、結論……………………………………………………….……….72
第五章、參考文獻……………………………..…………………….…….74
第二篇 金剛烷面選擇性之研究…………………..………………79
第一章、緒論………………………………………………………………..79
1-1 簡介………………………………………………………………...79
1-2 研究目標…………………………………………………………...84
第二章、計算方法…………………………..…………….……………….89
第三章、結果與討論……………………………………………………..91
第四章、參考文獻……………………………………………………….…99

Aker, P. M., O’Brien, J. J. A., Sloan, J. J. J. Chem. Phys. 1986, 84, 745.
Alfassi, Z. B., and Golden, D. M., J. Phys. Chem., 1972, 76, 3314.
Arai, H., Kato, S., Koda, S. J. Phys. Chem. 1994, 98, 12.
Basco, N., Norrish, R. G. W. Can. J. Chem. 1960, 38, 1769.
Beyer, and Swinehart Commun. Assoc. Comput. Machin. 1973, 16, 372.
Branko, S. J., J. Molec. Struct. (Theochem). 1998, 427, 137.
Brasseur, D., and Soloman, S. Aeronomy of the Middle Atmosphere, 1984
Butkovskaya, N. I., Zhao, Y., and Setser, D. W. J. Phys. Chem. A. 1994, 98, 10779.
Casavexxhia, P., Buss, R. J., Sibener, S. J., Lee, Y. T. J. Chem. Phys. 1980, 73, 6351.
Chang, A. H. H., Mebel, A. M., Yang, X. M., Lin, S. H., and Lee, Y. T. J. Chem. Phys. 1998, 109, 2748.
Chang, A. H. H., Mebel, A. M., Yang, X. M., Lin, S. H., and Lee, Y. T. Chem. Phys. Lett. 1998, 287, 301.
Crosley, D. R. J. Atmos. Sci. 1995, 52, 3299.
Curtiss, L. A., Lucas, D. J., Pople, J. A. J. Chem. Phys. 1995, 102, 3292.
Davidson, J. A., Sadowski, C. M., Schiff, H. I., Streit, G. E. Howard, C. J., Jennings, D. A., and Schmeltekopf, A. L. J. Chem. Phys. 1976, 64, 57.
Davidson, J. A., Schiff, H. I., Streit, G. E., McAfee, J. R., Schmeltekopf, A. L., and Howard, C. J. J. Chem. Phys. 1977, 67, 5021.
DeMore, W. B., Raper, O. F. J. Chem. Phys. 1967, 46, 2500.
DeMore, W. B., Sander, S. P., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R. JPL Publication Pasadena CA. 1990, 1, 90-1.
Eyring, H., Lin, S. H., and Lin, S. M. Basic Chemical Kinetics. Wiley. New York. 1980.
Fletcher, I. S., and Can, D. H. J. Chem. Phys. 1976, 54, 1765.
Fossey, J., and Sorba, J., J. Molec. Struct. (Theochem) 1989, 186, 305.
Frish, M. J., Frisch, A., Foresman, J. B. Gaussian 94 User’s Reference
Frish, M. J., Frisch, A., Foresman, J. B. Gaussian 98 User’s Reference
Gilbert, T. L. Phys. Rev. B. 1975, 12, 2111.
Greenberg, R. I., Heicklen, J. Int. J. Chem. Kinet. 1972, 4, 417.
Hohenberg, P., and Kohn, W. Phys. Rev. 1964, 136, B864.
Hsu, Y. T., and Liu, K. Ibid. 1997, 107, 2351.
Hsu, C. C., Mebel, A. M., and Lin, M. C. J. Chem. Phys. 1996, 105, 2346.
Hsu, Y. T., Wang, H. H., and Liu, K. J. Chem. Phy. 1997, 107, 1664.
Hurwitz, Y., Rudich, Y., Naaman, R. Chem. Phys. Lett. 1993, 215, 674.
Holmes, J. L., Lossing, F. P., and Meyer, P. M. J. Am. Chem. Soc. 1991, 113, 9723
Jayanty, R. K. M., Simonaitis, R., Heicklen, J. Int. J. Chem. Kinet. 1976, 8, 107.
Jones, R. O., and Narson, O. G. Rev. Mod. Phys. 1989, 61, 689.
Kaiser, R. I., Mebel, A. M., Chang, A. H. H., Lin, S. H., and Lee, Y. T. J. Chem. Phys. 1999, 110, 10330.
Kaiser, R. I., Stranges, D., Lee, Y. T., and Suits, A. G. J. Chem. Phys. 1996, 105, 8721.
Kajimoto, O., Yamasaki, H., Fueno, T. Chem. Phys. Lett. 1979, 68, 127.
Kohn, W., and Sham, L. J. Phys. Rev. 1965, 140, A1133.
Levy, M. Phys. Rev. A. 1982, 26, 1200.
Lin, C. L., DeMore, W. B. J. Phys. Chem. 1973, 77, 863.
Lin, J. J., Harich, S., Lee, Y. T., and Yang, X. J. Chem. Phys. 1999, 110, 10821.
Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 1998, 109, 2975.
Lin, M. C., Hsu, C. C., Kristyan, S., and Melius, C. F., Proceedings of the JANNAF Combustion Meeting. 1996, CPIA Publication Laurel MD. 1997, 653, Vol. II, 419.
Liu, X., Lin, J. J., Harich, S. A., Schatz, G. C., and Yang, X. Science. 2000, 289, 1536.
Luntz, A. C. J. Chem. Phys. 1980, 73, 1143.
Mebel, A. M., Morokuma, K., Lin, M. C., Melius, C. F. J. Chem. Phys. 1995, 99, 1900.
Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 7414.
Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 3440.
Michaud, P., and Cvetanovic, R. J. J. Phys. Chem. 1972, 76, 1375.
Nguyen,T. L., Mebel, A. M., Lin, H. S., and Kaiser, R. I. J. Chem. Phys. 2001, 110, 10330.
Niki, H., Maker, P. D., Savage, C. M., Breitenbach, L. P. Int. J. Chem. Kinet. 1980, 12, 1001.
Ninomiya, Y., Kawasaki, M., Guschin, A., Molina, L. T., Molina, M. J., Wallington, T. J. Environ. Sci. Technol. 2000, 34, 2973.
Orlando, J. J., Tyndall, G. S., Wallington, T. J. J. Phys. Chem. 1996, 100, 7026.
Paraskevopoulos, G., and Cvetanovic, R. J. J. Chem. Phys. 1969, 50, 590.
Paraskevopoulos, G., Cvetanovic, R. J. J. Chem. Phys. 1970, 52, 5821.
Park, C. R., Wiesenfeld, J. R. J. Chem. Phys. 1991, 95, 8166.
Rudich, Y., Hurwitz, Y., Frost, G. J., Vaida, V., and Naaman, R. J. Chem. Phys. 1993, 99, 4500.
Satyapal, S., Park, J., Bersohn, R., Katz, B. J. Chem. Phys. 1989, 91, 6873.
Schlutter, J., Schott, R., Kleinermanns, K. Chem. Phys. Lett. 1993, 213, 262.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2000, 113, 5287.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 114, 4.
Shu, J., Lin, J. J., and Wang, C. C., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 115, 842.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 115, 849.
Simons, J. P., “Theoretical chemisty’, Utah, 2002
Sosa, C., and Schlegel, H. B. J. Am. Chem. Soc. 1987, 109, 7007.
Sumathi, R., Sengupta, D., and Nguyen, M. T. J. Phys. Chem. A. 1998, 102, 3175.
van Zee, R. D., Stephenson, J. C., Casassa, M. P. Chem. Phys. Lett. 1994, 223, 167.
van Zee, R. D., and Stephenson, J. C. J. Chem. Phys. 1995, 102, 6946.
Wada, S. I., and Obi, K. J. Phys. Chem. A. 1998, 102, 3481.
Xia, W. S., Zhu, R. S., Lin, M. C., and Mebel, A. M. Faraday Discuss. 2001, 119, 191.
Yamabe, T., Koizumi, M., Yamashita, K., and Tachibana, A. J. Am. Chem. Soc. 1984, 106, 2255.
Yamazaki H., and Cvetanovic, R. J., J. Chem. Phys. 1964, 41, 3703.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 探討新冠肺炎疫情下臺灣旅遊從業人員轉型培訓課程對觀光旅遊產業競爭力之影響研究
2. 探討國中學生對於不同的數學價值認同程度以及不同的數學價值對於學生數學學習動機的影響
3. 探討技術指標報酬率與公司特徵之關係–以布林通道為例
4. 探討分組策略對學生在小組討論情境中之科學創造力與行為表現的相關性
5. 探討新生期dexamethasone處理對大鼠海馬迴中動情素受體之表現量及長期增益效應之影響
6. 探討人格特質在採用遠距離辦公時其工作自我調控與工作績效之相關:以 COVID-19 疫情之觀點
7. 探討協作體感遊戲對幼兒的情緒理解與動作技能之影響
8. 探討新冠肺炎疫情影響下,國際健身產業趨勢發展與複合商業模式創新 - 以「莎老師線上教室」為例
9. 探討引入 3D 線上整體造型穿搭系統對戲劇人物塑造之影響
10. 探討客製化、自我參照與廣告內容類型對於聊天機器人廣告效果之影響
11. 影視教材在國中歷史教學的運用—以影片《阿罩霧風雲II:落子》為中心
12. 《生活》週刊中的外國書寫—以日、美兩國為中心
13. 探討合作教學與閱讀策略融入數學教學對高職學生的影響
14. 國小普特合作改善輕度自閉症學生情緒行為問題成功案例之探討
15. 歷史走入心間:情意教育課程設計對啟聰學校國中生歷史學習影響之行動研究