跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳龍賓
研究生(外文):LUNG-PIN CHEN
論文名稱:分散劑的合成以及對於鈦酸鋇漿體分散性能的評估
指導教授:許貫中許貫中引用關係
指導教授(外文):K. C. Hsu
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:92
中文關鍵詞:分散劑鈦酸鋇粉末合成分散性質
外文關鍵詞:dispersantBaTiO3 powdersynthesisdispersion properties
相關次數:
  • 被引用被引用:9
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要合成兩種高分子,並探討其對鈦酸鋇漿體的分散效果,並和商用分散劑聚甲基丙烯酸銨鹽(PMAAN)做比較。
首先合成兩種高分子,一為α-(N,N-二甲基-N-(3-(β-羧基)丙烯氨)丙基)/丙烯醯胺共聚物(PDAE),一為4羧基氨基-4酮基-2-丁烯酸/丙烯醯胺共聚物(PCOB)。PDAE係以β-羧基-N-(3-二甲基氨丙基)丙烯醯胺和氯醋酸鈉反應生成β-羧基-N-(3-二甲基氨丙基-N-乙酸鈉)丙烯醯胺單體,再與丙烯醯胺經自由基反應而得。PCOB係以馬來酸酐和氨基甲酸銨鹽反應生成4羧基氨基-4酮基-2-丁烯酸銨鹽單體,再與丙烯醯胺經自由基反應而得。合成之PDAE與PCOB均以H1-NMR與IR確認其結構。
其次,以黏度法、沉降法、粒子之粒徑分佈、表面電位量測及掃描式電子顯微鏡(SEM)來評估各分散劑的分散效果。結果顯示PDAE、 PCOB比PMAAN可以更有效地分散漿體中鈦酸鋇粒子,同時漿體中鋇離子的溶出量明顯較少,主要的原因是PDAE、 PCOB有較多吸附於鈦酸鋇粉體表面,得以吸附/結合較多的鋇離子。添加PDAE或PCOB的鈦酸鋇漿體製成的生胚有較大的密度,而燒結後之胚體,其介電常數值較高,介電損失較低,及燒結胚體密度也較大;顯示PDAE與PCOB兩者對鈦酸鋇粉末的分散性能優於PMAAN。
This study has prepared two polymers and evaluated their dispersion properties on BaTiO3 slurries. The results were compared to those by a commercial dispersant, i.e., ammonium salt of polymethylacrylic acid (PMAAN).
First, two polymers have been made. One is poly(α-(N,N-dimethyl- N- (3-(β-carboxylate)acrylamino)propyl)ammonium ethanate-acrylamide) (PDAE), which was prepared from β-carboxylate-N-(3-dimethylamino propyl -N-acryloxyethyl) acrylamide and acrylamide through a free
radical copolymerization. β-carboxylate-N-(3-dimethylamino propyl —N -acryloxyethyl)acrylamide was made by reacting β-carboxylate -N- (3- dimethylaminopropyl) acrylamide with sodium chloroacetate. Another is poly(4-carboxyamino-4-oxo-2-butene) acrylamide (PCOB), which was prepared from 4-carboxyamino-4-oxo-2-butene and acrylamide through a free radical copolymerization. 4-carboxyamino-4-oxo-2-butene was made by reacting maleic anhydride with ammonium carbamate. The chemical structures of PDAE and PCOB have been identified and confirmed by their H1-NMR and IR spectra.
Second, the dispersion properties of each dispersant have been evalu- ated by the viscosity, sedimentation height, particle size distribution, and zeta potential, and through SEM observations. The results indicate that both PDAE and PCOB show better dispersion effects on the BaTiO3 pow- der in aqueous slurries than PMAAN. They also causes less Ba2+ ions to be dissolved into solutions, for greater amount of either PDAE or PCOB adsorbed on BaTiO3 particles and more Ba2+ ions also adsorbed. The resulting green parts with either PDAE or PCOB show greater density, and the sintered parts have higher dielectric constant, lower dielectric loss, and greater density. Thus, both PDAE and PCOB exhibit better dispersion properties than PMAAN.
第一章 緒論-----------------------------------------------------------------------1
第二章 文獻回顧-----------------------------------------------------------------3
2-1 鈦酸鋇合成法與電性特性----------------------------------------------3
2-1-1鈦酸鋇粉末的合成----------------------------------------------------3
2-1-2 添加物對鈦酸鋇電性的影響---------------------------------------4
2-2 分散原理-------------------------------------------------------------------8
2-2-1 粒子之特性------------------------------------------------------------8
2-2-2 粒子間的作用力------------------------------------------------------8
2-2-3 分散機構-------------------------------------------------------------10
2-3 界面活性劑的種類與用途--------------------------------------------14
2-3-1 界面活性劑的種類-------------------------------------------------14
2-3-2 高分子界面活性劑的用途----------------------------------------15
2-4 分散效果之評估法----------------------------------------------------16
2-4-1 分散系統之流變性質----------------------------------------------16
2-4-2 沉降法----------------------------------------------------------------18
第三章 分散劑的合成與鑑定------------------------------------------------20
3-1 前言-----------------------------------------------------------------------20
3-2 高分子之合成-----------------------------------------------------------20
3-2-1 藥品與儀器設備----------------------------------------------------20
3-2-2 實驗步驟-------------------------------------------------------------22
3-3 分子量的評估-----------------------------------------------------------26
3-4 高分子固含量的量測--------------------------------------------------27
3-5 結果與討論--------------------------------------------------------------28
3-5-1 高分子結構鑑定----------------------------------------------------28
3-5-2 分子量的量測-------------------------------------------------------30
3-5-3 固含量的量測-------------------------------------------------------30
第四章 鈦酸鋇粒子分散行為之測試---------------------------------------39
4-1 前言----------------------------------------------------------------------39
4-2 實驗評估----------------------------------------------------------------39
4-2-1 藥品與儀器設備----------------------------------------------------39
4-2-2 實驗材料-------------------------------------------------------------40
4-3 實驗製程----------------------------------------------------------------41
4-3-1 漿料混合-------------------------------------------------------------41
4-3-2 燒結-------------------------------------------------------------------41
4-4性質分析------------------------------------------------------------------45
4-4-1 沉降高度-------------------------------------------------------------45
4-4-2 粒徑分佈-------------------------------------------------------------45
4-4-3 黏度-------------------------------------------------------------------45
4-4-4 表面電位-------------------------------------------------------------45
4-4-5 鋇離子溶出量-------------------------------------------------------46
4-4-6 胚體密度-------------------------------------------------------------46
4-4-7 介電常數與介電損失----------------------------------------------47
4-4-8 微結構------------------------------------------------------------48
第五章 鈦酸鋇粒子分散行為結果與討論--------------------------------49
5-1 pH值的影響----------------------------------------------------------49
5-1-1 pH值對鈦酸鋇粉末的影響--------------------------------------49
5-1-2 pH值對高分子助劑的影響--------------------------------------50
5-2 粒子分散特性--------------------------------------------------------53
5-2-1 粒徑分佈------------------------------------------------------------53
5-2-2 沉降高度------------------------------------------------------------57
5-2-3 微結構---------------------------------------------------------------62
5-3 流變性質--------------------------------------------------------------66
5-4 表面電位--------------------------------------------------------------70
5-5 鋇離子溶出量--------------------------------------------------------75
5-6 燒結密度--------------------------------------------------------------77
5-7 介電常數與介電損失-----------------------------------------------79
5-8 微結構-----------------------------------------------------------------83
第六章 結論--------------------------------------------------------------------86
參考資料--------------------------------------------------------------------------88
1.G. Y. Carlos, B. R. Heberto, and M. Froylan, “Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant, ”Ceramics International, 26, 609-616 (2000).
2. K. Mikeska, and W. R. Cannon, “Advances in Ceramics, ” J. Am. Ceram. Soc., 165-183 (1984).
3. J. H Jean, and H. R. Wang, “Dispersion of Aqueous Barium Titanate Suspensions with Ammonium Salt of Poly(methacrylic acid), ” J. Am. Ceram. Soc., 81 [6] 1589-99 (1998).
4.李鴻銘,“異性兩性苯乙烯─馬來酸酐共聚合物之合成與特性,” 成大化工所碩士論文, 1995.
5. A. W. M. de Laat, and W. P. T. Derks, “Colloidal Stabilization of BaTiO3 with Poly (vinyl alcohol) in Water, ” Colloids Surf. A., 71,147-53 (1993).
6.Vis. Kumar, “Solution-Precipitation of Fine Powders of Barium Titanate and Strontium Titanate, ” J. Am.Ceram. Soc., 82 [10] 2580 -84 (1999).
7.王惠民,“兩性高分子對黏土粒子行為之影響”, 成大化工所碩士論文, 1994.
8. J. Cesarano, and I. A. Aksar, “Stability of Aqueous Al2O3 Sjuspensions with PolyCmethacrylic acid) Polyelectrolyte”, J. Am. Ceram. Soc., 71 [4] 250-55 (1988).
9. C.C. Shih, and H.M. Hon, “Stabilization of aqueous Si3N4 suspensions with ammonium salt of poly(acrylic acid) at various pH, ”Mater. Chem. Phys., 57, 125-33 (1998).
10. Z. C. Chem., T. A. Ring, and J. Lemaitre, “Stabilization and Processing of Aqueous BaTiO3 Suspensions with Polyacrylic Acid, ” J. Am. Ceram. Soc., 75 [12] 3201-208 (1992).
11.吳玉祥,“鈦酸鋇製程與結晶構造分析之研究, ”台大材料所博士論文,1994.
12. K. Kudaka, K. Iizumi, and K. Sasaki, “Preparation of Stoichiometric Barium Titanyl Tetahydrate, ” J. Am. Ceram. Soc., Bull., 61 [11] 1236 (1982).
13. K.S. Mazdiyasni, and L. M. Brown, “Synthesis of Nb2O5-Doped with BaTiO3 Improved Electrical Properties, ” J. Am. Ceram. Soc., 55[12] 633 -34 (1972).
14. K.S. Mazdiyasni, “Fine Particle Peroveskite Processing, ”J. Am. Ceram. Soc. Bull., 63 [4] 591-94 (1984).
15. W.J. Dawson, “Hydrothermal Synthesis of Adianced Ceramic Pow- ders, ”J. Am. Ceram. Soc. Bull., 67 [10] 1673-78 (1988).
16.翁震良,“釵酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究,” 台大材料所碩士論文,2000.
17. M.Hillert, “On the Theory of Normal and Abnormal Grain Growth,” Acta Metall., 13 [3] 227-38 (1965).
18. G. Arlt, and D. Hennings, “Dielectric Properties of Fine-Grained Barium Titanate, ” J. Appl. Phys., 58, 1619-25 (1985).
19. A. Yainaji, Y. Enomoto, K. Kinoshita, and T. Murakami, “Preparation, Characterization, and Properties of Dy-Doped Small-Grained BaTiO3 Ceramics, ” J. Am. Ceram. Soc., 60 [3-4] 97-101 (1977).
20. M. Kahn, “Influence of Grain Growth on Dielectric Properties of Nb -Doped BaTiO3, ” J. Am. Ceram. Soc., 54 [9] 455-57 (1971).
21. G.D. Parfitt, “Dispersion of Powders in Liquids”, 3rd. ed. Applied Science Publishers, Inc., New Jersey (1981).
22. D.H. Napper, “Polymeric Stabilization of Colloidal Dispersions, ” Academic Press Inc., San Diego (1983).
23. R.H. Ottewill, J. Colliod Interface Sci., 58, 357 (1977).
24. J. TH, G. Overbeed, J. Colloid Interface Sci., 58, 408 (1977).
25. T. Sato, and R. J. Ruch, “Stabilization of Colloid Dispersions by Polymer Adsorption, ” Marcel Dekker, Inc., New York (1980).
26. D.H. Napper, J. Colloid Interface Sci., 58, 390 (1977).
27. W. Heller, T.L. Pugh, J. Polymer Sci., 67, 203 (1960).
28. B. Vincent, Advanced in Colloid and Interface Science, 4, 193-277 (1974).
29. E.D. Goddard, and B. Vincent, “Polymer Adsorption and Dispersion Stability, ” ACS Symposium series, 240, Washinton, D.C. (1984).
30. Th. F. Tadros, “The Effect of Polymer on Dispersion Properties, ” Academic Press, London (1982).
31. I. Piirma, “Polymer Surfactants, ” Marcel Dekker Inc., New York (1992).
32. J. M. H. M. Schentijens, G. J. Fleer, J. Phys. Chem., 83,1619 (1979).
33. T. C. Patton, J. Paint Technol., 42 (551), 666 (1970).
34. M.J. Rosen, “Surfactants and Interfacial Phenomena, ” John Wiley and Sons. Inc., New York (1978).
35. G. D. Botsaris, and Y. M. Glazman, “Interfacial Phenomena in Coal Technology, ” Marcel Dekker, New York (1989).
36. S.L. Rosen, “Fundamental Principles of Polymeric Materials, ” John Wiley and Sons., New York (1982).
37.賴建吉,“親油基或親水基改良之馬來酸酐共聚合物之合成與其效果,”成大化工所碩士論文,1992.
38. R. Darby, B. Rogers, A. I. Ch. E. Journal, 26, 310 (1980).
39. H.L. Cohen, J. Polym. Sci. Chem. Ed. 14 (1), 7 (1988).
40. L. Charles, M. Cormick, C. B. J ohnson, “Macromolecules, ”21 (3), 686 (1988).
41.虞邦英,“鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究,” 台大材料所碩士論文,2001.
42.C.W.Chang, “Dissolution of Ba2+ and Its Effect on Dispersion Behavior of Aqueous BaTiO3 Suspension, ” 清大材料所碩士論文.
43.D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers, and T. R. Shrout, “Surface Chemistry Effects on Ceramic Processing of BaTiO3 Powder, ” pp485-92 in Ceramic Transactions,Vol.1,Ceramic Powder Science ⅡA,Edited by G. L. Messing, E. R. Fuller Jr., H. Hausner, American ceramic Society,Westerville,Ohio (1988).
44.C. J. Shih, B. H. Lung, and M. H. Hon, “Collidal processing of titanium nitride with poly-(methacrylic acid ) polyelectrolyte,” Materials Chem.and Phy.60,150-157(1999).
45.R. J. Hunter, “Zeta Potential in Colloid Science-Principles and Applications, ”Academic Press, London (1981).
46.A. Tsetsekou, C. Agrafiotis, and A. Milias, “Optimization of the rheological properties of alumina slurries for ceramic processing applications, PartⅠ:Slip-casting, ”J. Eur. Ceram. Soc., 21, 363-373 (2001).
47.J. H. D. Hampton, S. B. Savage, and R. A. L. Drew, “Experimental analysis and modeling of slip casting, ” J. Am. Ceram. Soc.,71(12), 1040- 1045 (1988).
48.R. Greenwod, and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acous tophoresis, ”J. Eur. Ceram. Soc.,19,479-488(1999).
49.M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Property of Aqueous Phase Suspension of Barium Titanate, ” J. Eur. Ceram. Soc., 17,281- 287 (1997).
50.Y. Fukuda, T. Togahi, Y. Suzuki, M. Naito, and H. Kamiya, “Influence of additive content of anionic polymer dispersant on dense alumina suspension viscosity, ”Chem. Eng. Sci., 56, 3005-3010 (2001).
51.S. Biggs, “Steric and bridging forces between surfaces bearing adsorbed polymer : An atomic force microscopy study, ” Langmuir, 11 (1), 156-162 (1995).
52.T. J. Senden, C. J. Drummona, and P. Kekicheff, “Atomic force microsc opy : Imaging with elecyrical double layer interactions, ” Langmuir, 10, 358-362 (1994).
53.L. A. Xue, “Thermodynamic benefit of Abnormal Grain Growth in Pore Elimination During Sintering, ” J. Am. Ceram. Soc., 78 (8), 1536 -37 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top