跳到主要內容

臺灣博碩士論文加值系統

(44.210.132.31) 您好!臺灣時間:2022/08/19 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玫君
研究生(外文):Mei-June Lin
論文名稱:環境因子對聚球藻RF-1光合作用的影響
論文名稱(外文):Effect s of environmental factors on the photosynthesis of Synechococcus RF-1
指導教授:周雪美周雪美引用關係
指導教授(外文):Ph. D. Hsueh-Mei Chou
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生物研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:聚球藻RF-1概日韻律膜蛋白COP23釋氧速率馴化
外文關鍵詞:Synechococcus RF-1circadian rhythmmembrane protein COP23 (circadian oscillating polypeptide)rate of oxygen evolutionentrainment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以台灣產的單細胞固氮藍綠菌-聚球藻RF-1(Synechococcus RF-1)為實驗材料,探討其光合作用的概日韻律、比較光合作用和膜蛋白COP23之概日韻律的差異性、及環境因子例如:溫度、光照強度和pH值等對聚球藻RF-1光合作用的影響。聚球藻RF-1之光合作用的釋氧速率具有概日韻律特性,經由12小時白光/12小時黑暗(12L/12D)或12小時紅光/12小時黑暗(12R/12D)馴化後,可建立其韻律,但12小時藍光/12小時黑暗(12B/12D)則否;紅光/黑暗馴化過程,若受遠紅光干擾,則會使韻律消失。除此之外,以12小時空氣/12小時含5% CO2之空氣交替通氣也可建立韻律。光合作用和COP23概日韻律具有以下兩點不同,第一是、光合作用和COP23概日韻律的高峰期分別是在光照期與黑暗期;第二是藍光、白光、紅光與黑暗的週期變化,皆可建立COP23之概日韻律。在含氮源培養環境,光合作用釋氧韻律會受到抑制,而且葉綠素a和類胡蘿蔔素的含量以及生長速率會增加。以5% CO2空氣通氣或50-70 mmol photons m-2 s-1光照強度培養時,光合作用速率、生長速率、以及葉綠素a含量均會下降。在pH8的培養環境,最適合光合作用進行和生長,若要在黑暗環境培養聚球藻RF-1,葡萄糖和果糖則是較佳選擇。

The aim of this study was (1) to identify the circadian rhythm of photosynthesis, (2) to compare the circadian rhythm between photosynthesis and membrane protein COP23 (circadian oscillating polypeptide), and (3) to investigate the effect of environmental factors such as temperature, light intensity, pH value, on the photosynthesis of Synechococcus RF-1, which is an unicellular N2-fixing cyanobacterium isolated at Taiwan. The rate of oxygen evolution in Synechococcus RF-1 exhibited circadian rhythm, which could be established by 12h white light/12h dark (12L/12D) or 12h red light/12h dark (12R/12D) entrainment, but not by 12h blue light/12h dark (12B/12D). The rhythm disappeared if the entrainment of 12R/12D was disturbed by far-red light. In addition, the rhythm could be established by 12h air/12h 5 ﹪CO2 —enriched air conduction as well. There were two different characteristics between photosynthetic and COP23 rhythms. Firstly, the peaks of photosynthetic and COP23 rhythms were in the light and dark periods respectively. Secondly, the rhythm of COP23 could be established by 12B/12D as well as 12L/12D or 12R/12D photoperiods. When Synechococcus RF-1 was cultured in the presence of nitrate, the expression of photosynthetic rhythm established by 12L/12D was inhibited, the content of chlorophyll a and carotenoids and the rate of growth were increased; in the aeration of 5 ﹪CO2 and the irradiation of 50-70 mmol photons m-2 s-1, the rates of photosynthesis and growth, and the content of chlorophyll a declined. The optimal pH for the rates of photosynthesis and growth was pH8. The glucose and the fructose might be used as the carbon source if Synechococcus RF-1 was cultured in the dark.

圖表目次
圖一、聚球藻RF-1的細胞濃度與OD660nm吸光值相關曲線圖。………………. 26
圖二、聚球藻RF-1的光飽和曲線圖。……………………………………………27
圖三、聚球藻RF-1光合作用釋氧速率變化圖。……………………………….. 28
圖四、馴化時間與韻律建立的關係圖。…………………………………………. 29
圖五、光質與光合作用概日韻律之建立。………………………………………. 30
圖六、藍光對聚球藻RF-1光合釋氧概日韻律表現之影響。…………………..31
圖七、遠紅光對光合作用概日韻律的影響。……………………………………. 32
圖八、韻律蛋白COP23含量之概日韻律變化。…………………………………. 33
圖九、光質與COP23概日韻律變化之建立。……………………………………. 34
圖十、藍光對COP23摡日韻律變化之影響。……………………………………. 35
圖十一、遠紅光對COP23摡日韻律變化之影響。………………………………. 36
圖十二、氮源對光合作用概日韻律的影響。……………………………………. 37
圖十三、DCMU、EGTA、MSX長時間處理對光合作用概日韻律的影響。…. 38
圖十四、EGTA、MSX短時間處理對於光合作用概日韻律的影響。…………. 39
圖十五、氮源對聚球藻RF-1之光合作用的影響。…………………………….. 40
圖十六、二氧化碳濃度變化可建立光合釋氧概日韻律。………………………. 41
圖十七、CO2濃度對聚球藻RF-1光合作用之影響。………………………….... 42
圖十八、CO2濃度對聚球藻RF-1光合色素含量之影響。………………………. 43
圖十九、CO2濃度對聚球藻RF-1細胞生長速率之影響。………………………. 44
圖二十、聚球藻RF-1培養在不同CO2濃度下的pH值變化。…………………45
圖二十一、光照強度對聚球藻RF-1之光合作用和呼吸作用的影響。…………46
圖二十二、光照強度對聚球藻RF-1之葉綠素a和類胡蘿蔔素含量的影響。…47
圖二十三、聚球藻RF-1在不同光照強度下之生長曲線。………………………48
圖二十四、溫度對聚球藻RF-1之光合作用和呼吸作用的影響。………………49
圖二十五、溫度對聚球藻RF-1之葉綠素a和類胡蘿蔔素含量的影響。………50
圖二十六、溫度對聚球藻RF-1之生長曲線的影響。……………………………51
圖二十七、pH值和醣對聚球藻RF-1細胞生長(連續光照培養)的影響。………52
圖二十八、pH值和醣對聚球藻RF-1細胞生長(連續黑暗培養)的影響。………53
圖二十九、酸鹼度對聚球藻RF-1光合作用速率的影響。………………………54
圖三十、酸鹼度對聚球藻RF-1最大光合作用速率的影響。……………………55
表一、光質對光合作用和COP23概日韻律之影響。……………………………. 56
表二、5 ﹪CO2空氣對聚球藻RF-1的影響。…………………………………….. 56
表三、光照強度對聚球藻RF-1的影響。…………………………………………57
表四、溫度對聚球藻RF-1的影響。…………………………………………….... 57
目錄
中文摘要 …………………………………………………………….……………. I
英文摘要 …………………………………………………….……………….…… II
圖表目次 ………………………………………………………………………….. III
縮寫對照表………………………………………………………….………………. V
壹、緒論……………………………………………………………..……………… 1
貳、研究材料與方法……………………………………………..………………… 10
一、 研究材料…………………………………………………… .………….. 10
二、 研究方法…………………………………………………….…………... 10
1. 細胞濃度的估算………………………………………………………... 10
A. 細胞數目的計算…………………………………….……………… 10
B. 660 nm吸光值的測量………………………………………….…... 10
2. 光合色素的測定………………………………………………………... 10
3. 光合作用釋氧速率之測定……………………………………………... 11
4. 膜蛋白質的萃取分析…………………………..………………………. 11
5. 光合作用釋氧速率概日韻律的確認…………………………………... 12
6. 光合作用釋氧速率概日韻律之馴化與維持…………………………... 13
7. 光質對光合作用釋氧速率和COP23含量之概日韻律的影響………. 13
8. 遠紅光對光合作用釋氧速率和COP23含量之概日韻律的影響……. 13
9. 氮源對光合作用概日韻律的影響……………………………………... 13
10. DCMU、EGTA、和MSX等抑制劑長時期處理對光合作用概日韻律的影響………………………………………………………………………... 14
11. EGTA、和MSX等抑制劑短時期處理對光合作用概日韻律的影響.. 14
12. 氣體馴化建立光合作用概日韻律之情形………………..……………. 14
13. CO2濃度對光合作用的影響…………………………………………… 14
14. 光照強度對光合作用的影響………………………….……………….. 15
15. 溫度對光合作用的影響………………………………………………... 15
16. pH值和醣類對細胞生長與光合作用的影響…………………………. 15
17. 統計分析……………………………………………………………….. 15
參、結果……………………………………………………………………………. 16
一、 細胞濃度與吸光質的關係……………………………………………….... 16
二、 聚球藻RF-1釋氧速率光飽和曲線…………………………….…………. 16
三、 聚球藻RF-1的光合作用釋氧概日韻律…………………………………. 16
四、 光質對光合作用釋氧概日韻律之影響………………..…...……………... 17
I. 藍光對光合作用釋氧概日韻律建立之影響…………………………… 17
II.遠紅光對光合作用釋氧概日韻律表現之影響…………………………. 17
五、 概日韻律蛋白COP23的蛋白含量週期變化…………………………….. 18
六、 光質對於韻律蛋白COP23之影響……………………………………….. 18
I.藍光對COP23概日韻律變化之影響…………………………………… 19
II.遠紅光對COP23概日韻律變化的影響……………………………….. 19
七、 氮源對光合作用之影響……………………………………………….…... 20
I. 氮源對光合釋氧韻律之影響…………………………………………… 20
II.DCMU、EGTA和MSX對光合釋氧韻律之影響…………………….. 20
III. 氮源對於光合作用釋氧速率和光合色素的影響…..……………….. 20
八、 碳源對光合作用的影響…………………………………………………… 21
I. 通氣馴化與概日韻律之建立…………………………………………. 21
II. 以含不同二氧化碳濃度之空氣連續通氣觀察結果………………….. 21
淨光合作用釋氧速率…………………………………………………. 21
呼吸作用耗氧速率……………………………………………………. 22
葉綠素a含量…………………………………………………………. 23
類胡蘿蔔素含量………………………………………………………. 23
細胞生長曲線…………………………………………………………. 24
pH值…………………………………………………………………... 24
九、 光照強度對光合作用之影響…………………………………………….... 24
十、 溫度對光合作用的影響…………………………………………………… 25
淨光合作用釋氧速率、呼吸作用、總光合作用……………………. 25
葉綠素a含量、類胡蘿蔔素含量……………………………………. 25
細胞生長曲線…..……………………………………………………... 25
十一、 pH值對聚球藻RF-1的生長與光合作用的影響………….………….. 25
pH值對細胞生長的影響…………………………………………. 25
pH值對光合作用的影響………………………………………….. 25
肆、討論…………………………………………………………………………….. 58
一、 聚球藻RF-1的光合作用概日韻律……………………………………….. 58
二、 紅光、藍光與光合作用釋氧概日韻律………………….…………….….. 58
三、 光質對COP23韻律表現的影響………………………………………….. 59
四、 氮源和DCMU、EGTA、MSX等抑制劑對光合作用釋氧概日韻律之影響………………………………………………………………………….... 60
五、 碳源與氮源對光合作用的影響…………………………………………… 61
(1) 氣體馴化與光合作用概日韻律之建立………………………………… 61
(2) CO2濃度和氮源對光合作用的影響………………………………….... 61
六、 光照強度與溫度對光合作用的影響……………………………………… 63
七、 pH值和醣類對聚球藻RF-1的生長和光合作用的影響………………… 65
伍、參考文獻………………………………………………………………………. 66
附錄一………………………………………………………………………………. 80
附錄二………………………………………………………………………………. 81
附錄三……………………………………………………………………………….. 81
附錄四……………………………………………………………………………….. 82

伍、參考文獻
Adhidary SP, Sahu JK (1988) Utilization of organic substrates by two filamentous cyanobacteria under various growth conditions. Acta Microbiol Hung 35: 101-106
Ahamd M, Cashmore AR (1996) Seeing blue: the discovery of crytochrome. Plant Mol Biol 30: 851-861
Ahmad M (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Curr Opin Plant Biol 2: 230-235
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000) Inactivation of Photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiol 122: 1201-1208
Anderson JM, Andersson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13: 352-355
Anderson SL, Kay SA (1995) Functional dissection of circadian clock- and phytochrome-regulated transcription of the Arabidopsis CAB2 gene. Proc Natl Acad Sci USA 92: 1500-1504
Arend JDS, Minors A, Waterhouse JM (1989) Biological Rhythms in Clinical Practice. London Wrigut.
Asams RM, Rosenzwig C, Peart RM, Ritchie JT, McCart BA, Glyer JD, Curry RB, Jones JW, Boote KJ, Allen LH Jr (1990) Global climate change and U. S. agriculture. Nature 345: 219-224
Badger MR (1987) The CO2 concentrating mechanism in aquatic phototrophs. In: The biochemistry of plants, Vol. 10, pp.219-274, Hatch MD, Boardman NK, eds. Harcourt Brace Jovanovich, Publ.
Badger MR, Palmqvist K, Yu JW (1994) Measurement of CO2 and HCO3- fluxes in cyanobacteria and microalgae during steady state photosynthesis. Physiol Plant 90: 529-536
Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and green algae. Physiol Plant 84: 606-615
Bagchi SN, Chauhan VS, Palod A (1990) Heterotrophy and nitrate metabolism in a cyanobacterium Phormidium uncinatrn. Curr Microbiol 21: 53-57
Berry J, Bjökman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491-543
Björn LO (1994) Introduction. In: Photomorphogenesis in plants, pp.3-14, Kendrick RE, Kronenberg GHM eds. Kluwer Academic Publ.
Böhme H (1998) Regulation of nitrogen fixation in heterocyst-forming cyanobateria. Trends in Plant Sci 3: 346-351
Brock DT (1973) Lower pH limit for the existence of blue-green algae. Evolutionary and ecological implication. Sc 179: 480-483
Campbell D, Houmard J, Tandeau de Marsac N (1993) Electron transport regulates cellular differentiation in the filamentous cyanobacterium Calothix. Plant Cell 5: 451-463
Campbell D, Zhou G, Gustafsson P, Oequist G, Clarke AK (1995) Electron transport regulates exchange of two forms of phototsystem II D1 protein in the cyanobacterium Synechococcus. EMBO J 14: 5457-5466
Castenholtz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476-504
Chaplin AE, Gallon JR, Mullineaux PM (1981) Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternationg light-dark cycles. FEMS Microbiol Lett 10: 245-247
Chen HM, Chien CY, Huang TC (1996) Regulation and molecular structure of a circadian oscillating protein located in the cell membrane of the prokaryote Synechococcus RF-1. Planta 199: 520-527
Chen TH, Chen TL, Hung LM, Huang TC (1991) Circadian rhythm in amino acid uptake by Synechococcus RF-1. Plant Physiol 97: 55-59
Chen TH, Huang TC, Chow TJ (1988) Calcium requirement in nitrogen fixation in the cyanobacterium Synechococcus RF-1. Pl 173: 253-256
Chen TH, Huang TC, Chow TJ (1989) Calcium is required for the increase of dark respiration during diurnal nitrogen fixation by Sybechococcus RF-1. Plant Sci 60: 195-198
Chen TH, Pen SY, Huang TC (1993) Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Sci 92: 179-182
Codd GA, Cossar JD (1978) The site of inhibition of photosystem II by 3-(β, 4-dichlorophenyl)-N-N’ dimethylurea in thylakoids of the cyanobacterium Anabaena cylindrica. Biochem Biophys Res Commun 83: 342-346
Colon-Lopez MS, Sherman DM, Sherman LA (1997) Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 179(13): 4319-4327
Dal-Khatib K, Paulsen GM (1989) Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiol 90: 1041-1048
Doty MS (1973) Farming the red seaweed , Eucheuma, for carrageenans. Micronesica 9: 59-73
Dunlap JC, Feldman JF (1988) On the role of protein synthesis in the circadian clock of Neurospora crassa. Proc Natl Acad Sci USA 85(4): 1096-1100
Edmunds LN (1988) Cellular and molecular bases of biological clocks.Sprnger-Verlag, New York.
Emery P, So WV, Kaneko M, Hall JC, Rosbach M (1998) Cry, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669-679
Erdmann N, Fulda S, Hagemann M (1992) Glucosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. J Gen Microbiol 138: 363-368
Espie GS, Miller AG, Birch DG, Canvin DT (1988) Simultaneous trasport of CO2 and HCO3- by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 87: 551-554
Fay P (1992) Oxygen relation of nitrogen fixation in cyanobacteria. Microbiol Rev 56(2): 340-373
Fork DC, Sen A, William WP (1987) The relationship between heat-stress and photobleaching in green and blue-green algae. Photosynthe Res 11: 71-87
Fritz L, Morse D, Hastings JW (1990) The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles. J Cell Sci 95(2): 321-328
Fujita Y, Murakami A, Ohki K (1987) Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol 28: 283-292
Galllon JR, Perry M, Rajab TMA, Flayesh KAM, Junes AE (1988) Chlaplain, Metabolic changes associated with diurnal pattern of nitrogen fixation in Gleothece. J. Gen Microbiol 134: 3079-3087
Gallon JR (1992) Tansley Review no. 44. Reconciling the incompatible: N2 fixation and O2. New Phytol 122(4): 571-609
Gallon JR, Hamadi AF (1984) Studies on the effects of oxygen on acetylene reduction (nitrogen fixation) in Gloeothece sp. ATCC 27152. J Gen Microbiol 130(3): 495-503
Gantt E (1994) Supramolecular membrane organization. In: The molecular biology of cyanobacteria, pp 119-138, Bryant DA, ed. Kluwer Academic Publ.
Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enchanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J App Phycol 3: 355-362
Giordano M (2001) Interactions between C and N metabolism in Dunaliella salina cells cultured at elevated CO2 and high N concentraions. J Plant Physiol 158: 577-581
Glover HE, Keller MD, Spinrad RW (1987) The effect of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105: 137-159
Golden SS, Brusslan J, Haselkorn R (1987) Genetic engineering of the cyanobacterial chrmosome. Methods Enzymol 153: 215-231
Gombos Z, Wada H, Murata N (1991) Direct evaluation of effects of fatty-acid unsaturation on the thermal properties of photosynthetic activities, as studied by mutation and transformation of Synechocystis PCC 6803. Plant Cell Physiol 32: 205-211
Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC 6803 to low-temperature photoinhibition. Proc Natl Acad Sci (USA) 89: 9959-9963
Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsatruation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci (USA) 91: 8787-8791
Götz T, Windhövel U, Böger P, Sandmann G (1999) Protection of photosynthesis against ultraviolet-B radiation by carotenoids in trasformants of the cyanobacterium Synechochoccus PCC 7942. Plant Physiol 120: 599-604
Granbom M, Pesersen M, Kadel P, Luening K (2001) Circadian rhythm of photosynthetic oxygen evolution in Kappaphycus alvarezii (Rhodophyta): dependence on light quantity and quality. J Phycol 37: 1020-1025
Grobbelaar N, Chou WM, Huang TC (1992) Effect of CO2, O2, DCMU, FCCP, and DL-glyceraldehyde on the nitrogenase activity of Synechoccus RF-1. Bot Bull Acad Scinica 33: 167-174
Grobbelaar N, Huang TC, Lin HT, Chow TJ (1986) Dinitrogen-fixation endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37: 173-177
Grobbelaar N, Huang TC, Lin HY, Chow TJ (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37(2): 173-177
Grobbelaar N, Lin HT, Huang TC (1987) Induction of a nitrogenase activity rhythm in Synechococcus RF-1 and the protection of its nitrogenase against photosynthetic oxygen. Curr Microbio 15: 29-33
Grobbelaar N, Chou WM, Huang TC (1992) Effect of CO2, O2, DCMU, FCCP. and DL-glyceraldehyde on the nitrogenase activity of Synechococcus RF-1. Bot Bull Acad Sinica 33(2): 167-174
Grotch SL (1988) Regional intercomparison of general circulation model prediction and historical climate data. USDE and USDAARS TR041, U.S. Printing Office, Washington, DC.
Hagemann M, Erdmann (1997) Environmental stresses. In: Cyanobacterial Nitrogen Metabolism and Environmental Biotechnoligy, pp.156-221, Rai AK ed. Springer, Heidelberg & Narosa Publ.
Hall DO, Rao KK (1994) Importance and role of photosynthesis; History and progress of ideas; Photosynthetic apparatus; Light absorption and the two photosystems. In: Photosynthesis, pp.1-76, Hall DO, Rao KK, eds. Pubblished by the Press Syndicate of the University of Cambridge.
Hall JC, Kyriacou CP (1990) Genetics of biological rhythm in Drosophila. Adv Insect Physiol 22: 221-298
Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Staecy G, Burris BH, and Evens HJ (eds) Biological , nitrogen fixation. Chapman and Hall, New York, pp 166-190
Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94: 19-33
Herrero A, Guerrero MG (1986) Regulation of nitrite reductase in the cyanobacterium Anacystis nidulans. J Gen Microbiol 132(9): 2463-2465
Hill S (1988) How is nitrogenase regulated by oxygen?. FEMS Microbiol Rev 54: 111-130
Hopkins WG (1995) Plant, Energy, and Carbon. In: Introduction to plant physiology, pp 126-261, Sally Cheney, ed. J Wiley & Sons, Inc.
Houmard J, Tandeau de Marsac N (1988) Cyanobacterial genetic tools: current status. Methods Enzymol 167: 808-847
Huang TC, Chen HM, Pen SY, Chen TH (1994) Biological clock in the prokaryote Syncechococcus RF-1. Pl 193: 131-136
Huang TC, Chou WM (1991) Setting of the circadian N2-fixing rhythm of the prokaryotic Synechococcus sp. RF-1 while its nif gene is repressed. Plant Physiol 96: 324-326
Huang TC, Chow TJ (1986) New type of nitrogen fixing unicellular cyanobacterium (blue green algae). FEMS Microbol Lett 36: 109-110
Huang TC, Chow TJ (1990) Characterisation of the rhythmic nitrogen fixing activity of Synechococcus sp. RF-1 at the transcription level. Curr Microbiol 20: 23-26
Huang TC, Chow TJ (1992) Characterization of the Calothrix isolates from rice fields. Bot Bull Acad Sinica 33: 23-31
Huang TC, Chow TJ, Hwang IS (1988) The cyclic synthesis of the nitrogenase of Synechococcus RF-1 and its control at the transcription level. FEMS Microbio Lett 50: 127-130
Huang TC, Grobbelaar N (1995) The circadian clock in the prokaryote Synechococcus RF-1. Microbiolog 141: 535-540
Huang TC, Lay KC, Tong SR (1991) Resetting the endogenous circadian N2-fixing rhythm of the prokaryote Synechococcus RF-1. Bot Bull Acad Sinica 32: 129-133
Huang TC, Tu J, Chow TJ, Chen TH (1990) Circadian rhythm of the prokaryote Synechococcus sp. Plant Physiol 92: 531-533
Huner NPA, Öquist G, Sarhan F(1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3(6): 224-230
Jones JI, Eaton JW, Hardwick K (2000) The effect of changing environmental variables in the surrounding water on the physiology of Elodea nuttallii. Aquatic Bontany 66: 115-129
Jonhson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53: 389-409
Joset O, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96: 738-744
Kanervo E, Tasaka Y, Murata N, Aro EM (1997) Membrane lipid unsaturation modulates processing of the photosytem II reaction-center protein D1 at low temperatures. Plant Physiol 114: 841-849
Kao WY, Tsai TT, Chen WH (1997) The responses of photosynthetic gas exchange and chlorophyll a fluorescence to changes of irradiance and temperature in two species of Miscanthus. Photosynthetica 34: 497-504
Kao WY, Tsai TT, Chen WH (1998) A comparative study of Miscanthus floridulus (Labill) warb and M. transmorrisonensis Hayata: photosynthetic gas change, leaf characteristics and growth in controlled environments. Annals of Botany 81: 295-299
Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon pool in the blue green algae Anabaena variabilis: response to external CO2 concentration. Planta 149: 219-226
Katoh S, San Pietro A (1967) Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch Biochem Biophys 122: 144-152
Kondo T, Ishiura M, (1994) Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence. J Bacteriol 176(7): 1881-1885
Krol M, Gray GR, Hurry VM, Oquist G, Malek L, Huner NP (1995) Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Can J Bot 73: 1119-1127
Li CR, Sun WQ, Hew CS (2001) Up-regulation of sucrose metabolizing enzymes in Oncidium goldiana grown under elevated carbon dioxide. Physiol Plant 113: 15-22
Lin RF, Chou HM, Huang TC (1999) Priority of light/dark entrainment over temperature in setting the circadian rhythms of prokaryote Synechococcus RF-1. Planta 209: 202-206.
Ludewig F, Sonnewald U, Kauder F, Heineke D, Geiger M, Stitt M, Müller-Röber BT, Gillissen B, Kühn C, Frommer WB (1998) The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Lett 429: 147-151
Maeso ES, Pinas FF, Gonzalez MG, Valiente EF (1987) Sodium requirement for photosynthesis and its relationship with dinitrogen fixation and the external carbon dioxide concentration in cyanobacteria. Plant Physiol 85(2): 585-587
Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76: 408-410
Maryan PS, Eady RR, Chaplin AE, Gallon JR (1986) Nitrogen fixation by Gloeothece sp. PCC 6909: Respiration and not photosynthesis supports nitrogenase activity in the light. J Gen Microbiol 132(3): 789-796
Millar AJ, Straume M, Chory J, Chua NH, Kay SA (1995) The regulation of circadian period by phototranduction pathways in Arabidopsis. Science (Wash) 267(5201): 1163-1166
Miller AG, Espie GS, Canvin DT (1990) Physiological aspects of CO2 and HCO3- transport by cyanobacteria: a review. Canad J Bot 68: 1291-1302
Miśkiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NPA (2000) Photosynthetic acclimation of the filamentous cyanobaterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41(6): 767-775
Misra HS, Tuli R (1994) Nitrogen fixation by Plectonema boryanum has a PSII independent component. Microbiolog 140: 971-976
Mitsue A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T. (1986) Strategy by which nitrogen fixing unicellular cyanobacteria grow photoautotrophically. Nature (London) 323: 720-722
Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323(6090): 720-722
Moon BY, Higashi SI, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci (USA) 92: 6219-6223.
Murakami A, Fujita Y (1993) Regulation of stoichiometry between PSI and PSII in response to light regime for photosynthesis observed with Synechocystis PCC 6714: relationship between redox state of cytb6-f complex and regulation of PSI formation. Plant Cell Physiol 34: 1175-1180
Murakami A, Kim SJ, Fujita Y (1997) Changes in photosystem stoichiometry in response to environmental conditions for cell growth observed with the cyanophyte Synechocystis PCC 6714. Plant Cell Physiol 38: 392-397
Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115: 875-879
Murata N, Wada H (1995) Acyl-lipid desaturases and therir importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1-8
Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol 47: 541-568
Nishiyama Y, Los DA, Murata N (1999) PsbU, a protein associated with Photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 120: 301-308
Öquist G, Campbell D, Clarke A, Custafsson P (1995) The cyanobacterium Synechococcus modulates photosystem II fuction in response to excitation stress through D1 exchange. Photosynth Res 46: 151-158
Quail PH (1998) The phytochrome family: dissection of functional roles and signaling pathways among family members. Philos Trans R Soc Lond B Biol Sci 353: 1399-1403
Reddy VR, Reddy KR, Hodges HF (1995) Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Res 41: 13-23
Reyes JC, Florencio FJ (1995) Electron transport conrtrols transcription of the glutamine synthetase gene (glnA) from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 27: 789-799
Ritchie RJ (1991) Membrane potential and pH control in the cyanobacterium Synechococcus R-2 (Anacystis nidulaus) PCC 7942. J Plant Physiol 137: 409-418
Ritchie RJ (1992) Sodium transport and the origin of the membrane potential in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC 7942. J Plant Physiol 139: 320-330
Roenneberg T, Mittag M (1996) The circadian program of algae. Semin Cell Dev Biol 7(6): 753-763
Sakamoto T, Bryant DA (1999) Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiol 119: 785-794
Salon C, Mir NA, Canvin DT (1996) Influx and efflux of inorganic carbon in Synechococcus UTEX 625. Plant Cell and Environment 19: 260-274
Santarius KA (1975) Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating. J Therm Bio 1: 101-107
Sarma TA, Khattar JIS (1994) Photoheterortophic and chemoheterotrophic dinitrogen fixation and nitrate utilization by the cyanobacterium Anabaena torulosa. Folia Microbiol 5: 404-408
Sato N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green algae, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim Biophys Acta 619: 353-366
Schneegurt MA, Sherman DM, Sherman LA (1997) Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142. Arch Microbiol 167: 89-98
Schneider SH (1989) The greenhouse effect — Science and Policy. Sci 243: 771-781
Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: The biology of cyanobacteria, pp 47-85, Carr NG, Whitton BA, ed, Blackwell Scientific Publ., Oxford.
Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes. Bacteriol Rev 41: 419-448
Stal LJ, Krumbein WE (1985) Nitrogenase activity in non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light/ dark cycles. Arch Microbiol 143: 67-71
Stanier RY, Kunidawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35: 171-205
Summers ML, Wallis JG, Campbell EL, Meeks JC. (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177: 6184-6194
Suutari M, Rintamaki A, Laakso S (1997) Membrane phospholipids in temperature adaptation of Candida utilis: Alterations in fatty acid chain length and unsaturation. J Lipid Res 38: 790-794
Tandeau de M, Houmard N, Houmard J (1993) Adaptation of cyanobacteria to e environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119-190
Tilzer MM (1987) Cyanobacterial dominance. New Zealand J Mar Freshw Res 21(3): 401-412
To KY, Suen DF, Chen SCG (1999) Molecular characterization of ribulose-1,5- bisphophate carboxylase/oxygnease activase in rice leaves. Planta 209: 66-76
Tredici MR, Margheri MC, Giovannetti L, De Philippis R, Vincenzini M (1988) Heterotrophic metabolism and diazotrophic growth of Nostoc sp. from Cycas circinalis. Plant Soil 110: 199-206
Valiente EF, Nieva M, Avendaño MC, Maeso ES (1992) Uptake and utilization of fructose by Anabaena varibilis ATCC 29413 effect on respiration and photosynthesis. Plant Cell Physiol 33(3): 307-313
Van Liere L, Walsby AE (1982) Interactions of cyanobacteria with light. In: The biology of cyanobacteria, pp 9-45 Carr NG, Whitton BA eds,Blackwell Publ., Oxford.
Vince-Prue (1994) The duration of light and photoperiodic response. In: Photomorphogenesis in plants, pp. 447-489, Kendrick RE, Kronenberg GHM eds. Kluwer Academic Publ.
Volokita M, Zenvirth D, Kalpan A, Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76: 599-602
Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC 6803. Plant Physiol 92: 1062-1069
Yeh KC, Lagarias JC (1998) Eularyotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95: 13976-13981
Yeh KC, Wu SH, Murphy JT, Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505-1508
Yu JW, Price GD, Badger MR (1994) Characterization of CO2 and HCO3- uptake during steady-state photosynthesis in the cyanobacterium Synechococcus PCC 7942. Aust J Plant Physiol 21: 185-195
李文婷, 吳丁蓉, 周雪美 (1989) 環境因子對聚球藻RF-1品系(Synechococcus sp. RF-1)生長的影響. 師大生物學報 24: 137-147
李珍燕 (2000) 聚球藻RF-1之97-kDa 鈣結合蛋白的研究. 國立台灣師範大學生物學系碩士論文.
周雪美 (1987) 二種單胞固氮藍綠藻之型態與生理特性的比較. 師大生物學報 22:33-43
郭長生 (1976) 藍綠菌. 生物科學 9: 35
陳弘民 (1996) 聚球藻RF-1韻律基因的特性研究. 國立台灣師範大學生物學系碩士論文
蔡坤達 (2001) 光對原核型聚球藻RF-1品系(Synechococcus RF-1)韻律蛋白COP23分解的調控. 中國文化大學生物科技系碩士論文

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top