跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡惠媛
論文名稱:FHIT基因/蛋白質變異參與台灣肺癌形成之機制探討
論文名稱(外文):Etiological association of FHIT gene/protein alterations with lung tumorigenesis in Taiwan
指導教授:王憶卿
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生物研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:67
中文關鍵詞:非小細胞肺癌FHIT抑癌基因5’CpG島叢甲基化mRNA剪接錯誤
外文關鍵詞:non-small cell lung cancerFHIT tumor suppressor genepromoter hypermethylationsplicing alteration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
肺癌為國人癌症死亡的首位,近年來每年約有6000人死於肺癌,但其分子致癌機制至今仍未釐清。由於癌症的形成過程中主要變異的基因為致癌基因 (Oncogenes) 活性過增或抑癌基因 (Tumor suppress genes) 失去活性;抑癌基因經研究證明需二個基因座皆變異才導致其失去活性而致癌,其變異的方式多為一基因座產生點突變、小片段鹼基缺失、或啟動子過度甲基化 (promoter hypermethylation),而另一基因座產生抑癌基因及鄰近區域DNA大片段的缺失 (loss of heterozygosity)。本研究的目的在探討位於染色體3p14.2 的FHIT抑癌基因,在台灣地區非小細胞肺癌病人細胞中之變異情形。利用免疫組織化學染色法,觀察病人組織切片中Fhit 之蛋白質表現,結果顯示有50.4% (65/129) 非小細胞肺癌病人細胞中Fhit蛋白質表現量異常降低;免疫組織化學染色的結果亦發現在69% (47/68) 鱗狀上皮細胞肺癌 (squamous carcinoma) 病人中Fhit蛋白質表現有異常,顯示Fhit蛋白質異常在鱗狀上皮細胞肺癌形成過程中扮演一個重要的角色。利用反轉錄-聚合酵素鏈反應分析癌組織中mRNA轉錄是否異常,結果顯示有38.8% (38/98) 非小細肺癌病人細胞中FHIT mRNA轉錄有異常降低的情形,其中24位病人其反轉錄-聚合酵素鏈反應產物有長度異常的片段,經定序分析後顯示這些長度異常的片段多含FHIT基因exons 4-9的缺失,研判多源自mRNA剪接 (splicing) 錯誤所導致。利用亞硫酸基因定序分析偵測FHIT基因5’ CpG島叢甲基化情形,結果顯示有30.8% (28/91) 病人DNA 有高度甲基化的情形。由於免疫組織化學染色結果顯示出53% (35/66) 早期非小細胞肺癌病人其Fhit蛋白質有表現異常的情形;從12個非小細胞肺癌病人早期支氣管表皮細胞的分析中,亦發現50% (6/12)的病人支氣管表皮細胞中有FHIT基因甲基化的情形,此12個病人支氣管表皮細胞FHIT基因甲基化情形與其腫瘤組織之甲基化情形達83% (10/12) 之一致性,這些結果顯示FHIT基因甲基化在肺癌形成早期即發生。從FHIT基因甲基化、mRNA表現異常及蛋白質表達異常的相關性分析中,顯示彼此間皆有顯著相關 (P £ 0.0001),且其中同時做了此三種不同分析的81人中,發現有60% (49/81) 的病人至少存有一種FHIT基因/蛋白質的變異。此實驗結果充分顯示出FHIT基因變異在台灣肺癌的形成過程中的重要性,未來可提供作為一個肺癌早期偵測的指標。

Lung cancer is the leading cause of cancer deaths in Taiwan. However, the molecular mechanisms involved in lung tumorigenesis in Taiwan remain poorly defined. It has been shown that alterations of tumor suppressor genes (TSGs) involve in the multi-step carcinogenesis of human cancer including lung cancer. Both copies of TSGs have to be inactivated for their function to be lost. One allele maybe inactivated by point mutation, methylation changes, or small deletions. The other allele is frequently inactivated by loss of heterozygosity, which showed a large deletion involving the gene of interest as well as adjacent stretches of DNA. The purpose of the present study was to investigate the etiological association of the FHIT tumor suppressor gene in lung tumorigenesis in Taiwan using the genetic and epigenetic analyses. The alteration of Fhit protein expression was examined by immunohistochemistry analysis. The results showed that 50.4% (65/129) NSCLC patients in Taiwan had decreased or loss expression of Fhit protein. Abnormal Fhit expression was more frequently found in squamous carcinomas (SQ, 69%) than in adenocarcinomas (AD, 28%) (P < 0.0001), suggesting that the FHIT alteration may play a significant role in the SQ lung tumorigenesis. Reverse transcriptase-polymerase chain reaction analysis of mRNA expression showed that, 38.8% (38/98) of patients exhibited FHIT transcripts with aberrant sizes or had low or absent FHIT mRNA expression. Sequencing analysis of the transcripts with aberrant sizes indicated that exons missing due to the splicing alterations were frequently detected. Methylation-specific PCR and bisulfite sequencing were conducted to detect the promoter methylation of the FHIT gene. The results showed that, 30.8% (28/91) of patients exhibited FHIT gene hypermethylation at exon 1 region. Decreased Fhit protein expression was detected in 53% (35/66) of tumors from stage-I and stage-II patients. In addition, the DNA of the bronchial epithelium cell from 12 lung cancer patients showed 50% (6/12) of methylation in the FHIT gene, and had an 83% (10/12) concordance of methylation with their tumor tissues. The data suggested that the FHIT gene and/or protein were altered in early lung tumorigenesis. Among a subset of 81 cases in which we were able to analyze all different types of FHIT aberration status, 60% (49/81) patients harbored at least one type of molecular alteration within the gene, strongly suggesting the importance of the FHIT alterations in NSCLC tumorigenesis. The results indicated that alteration of the FHIT gene might provide as a possible molecular marker for detection/diagnosis of NSCLC.

ABSTRACT ----------------------------------------------------------------- 1
INTRODUCTION ------------------------------------------------------- 5
I. The FHIT (fragile histidine triad) gene -------------------------- 6
II. Fhit protein structure and function -------------------------------- 7
III. Is FHIT a tumor suppressor gene? -------------------------------- 8
IV. FHIT gene/protein alterations in human cancers --------------- 9
V. FHIT gene/protein alterations in lung cancer -------------------- 10
VI. Mechanisms involved in FHIT alteration ----------------------- 12
PURPOSE ----------------------------------------------------------------- 15
MATERIALS AND METHODS ---------------------------------- 16
I. Tumor specimens and clinical characterization of patients----- 16
II. Microdissection and DNA extraction ------------------------- 17
III. Immunohistochemistry assay ----------------------------------- 18
IV. Multiplex RT-PCR analysis ------------------------------------- 19
V. cDNA sequencing ------------------------------------------------ 20
VI. MSP (methylation specific PCR) & bisulfite-sequencing
methods ------------------------------------------------------------ 20
VII. Multiplex PCR analysis ----------------------------------------- 22
VIII. Statistical analysis ----------------------------------------------- 23
RESULTS ------------------------------------------------------------------ 25
I. Fhit protein expression in NSCLC ------------------------------ 25
II. FHIT mRNA expression in NSCLC ---------------------------- 26
III. FHIT promoter hypermethylation in NSCLC ------------------ 28
IV. Correlation of FHIT methylation, mRNA expression,
and protein expression --------------------------------------------- 30
DISCUSSION ------------------------------------------------------------ 32
REFERENCES --------------------------------------------------- 39
FIGURES ------------------------------------------------------------------ 50
TABLES -------------------------------------------------------------------- 62

1. Department of Health, The executive Yuan, Republic of China. General Health Statistics, 2000. In: Health and Vital Statistics, Republic of China. R. O. C. Press, Taipei, pp. 87-112, 2000.
2. Minna JD, Sekido Y, Fong K, and Gazdar AF. In: Cancer: Principles and Practice of Oncology, 5th edit. Devita Jr VT, Hellman S, and Rosenberg SA (eds). Lippincott: Philadelphia, pp. 849-857, 1997.
3. Chen CJ, Wu HY, Chuang YC, Chang AS, Luh KT, Chao HH, Chen KY, Chen SG, Lai GM, Huang HH, and Lee HH. Epidemiological characteristics and multiple risk factors of lung cancer in Taiwan. Anticancer Res., 10: 971-976, 1990.
4. Bains M. Surgical treatment of lung cancer. Chest, 10: 826-837, 1991.
5. Mitsudomi. T, Steinberg SM, Nau MM, Carbone D, D’Amico D, Bodner S, Oie HK, Linnoila RI, Mulshine JL, Minna JD, and Gazdar AF. p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene, 7: 171-180, 1992.
6. Rosell R, Monzo M, Molina F, Martinez E, Pifarre A, Moreno I, Mate JL, de Anta JM, Sanchez M, and Font A. K-ras genotypes and prognosis in non-small-cell lung cancer. Ann. Oncol., 6: S11-S20, 1995.
7. Reissmann PT, Koga H, Takahashi R, Figlin RA, Holmes EC, Piantadosi S, Cordon-Cardo C, and Slamon DJ. Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. Oncogene, 8: 1913-1919, 1993.
8. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, and Sidransky D. 5’ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancer. Nat. Med., 1: 686-692, 1995.
9. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, Mao L, Herath J, Jenkins R, Westra W. Frequency of homozygous deletion at p16/CDKN2 in primary human tumors. Nat. Genet., 11: 210-212, 1995.
10. Kohno T and Yokota J. How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis, 20: 1403-1410, 1999.
11. Virmani AK, Fong KM, Kodagoda D, McIntire D, Hung J, Tonk V, Minna JD, and Gazdar AF. Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes, Chromos. and Cancer, 21: 308-319, 1998.
12. Negrini M, Monaco C, Vorechovsky I, Ohta M, Druck T, Baffa R, Huebner K, and Croce CM. The FHIT gene at 3p14.2 is abnormal in breast carcinomas. Cancer Res., 56: 3173-3179, 1996.
13. Ahmadian M, Wistuba II, Fong KM, Behrens C, Kodagoda DR, Saboorian MH, Shay J, Tomlinson GE, Blum J, Minna JD, and Gazdar AF. Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands. Cancer Res., 57: 3664-3668, 1997.
14. Croce CM, Sozzi G, and Huebner K. Role of FHIT in human Cancer. J. Clin. Oncol., 17: 1618-1624, 1999.
15. Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JWIII, Garner HR, McKay B, Latif F, Lerman MI, Lam S, Gazdar AF, and Minna JD. High-resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res., 60: 1949-1960, 2000.
16. Fong KM, Biesterveld EJ, Virmani A, Wistuba I, Sekido Y, Bader SA, Ahmadian M, Ong ST, Rassool FV, Zimmerman PV, Giaccone G, Gazdar AF, and Minna JD. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res., 57: 2256-2267, 1997.
17. Sozzi G, Tornielli S, Tagliabue E, Sard L, Pezzella F, Pastorino U, Minoletti F, Pilotti S, Ratcliffe C, Veronese ML, Goldstraw P, Huebner K, Croce CM, and Pierotti MA. Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res., 57: 5207-5212, 1997.
18. Tseng JE, Kemp BL, Khuri FR, Kurie JM, Lee JS, Zhou X, Liu D, Hong WK, and Mao L. Loss of Fhit is frequent in stage I non-small cell lung cancer and in the lungs of chronic smokers. Cancer Res., 59: 4798-4803, 1999.
19. Pennisi E. New gene forges link between fragile site and many cancers. Science, 272: 649, 1996.
20. Huebner K, Garrison PN, Barnes LD, and Croce CM. The role of the FHIT/FRA3B locus in cancer. Annu. Rev. Genet., 32: 7-31, 1998.
21. Garinis GA, Gorgoulis VG, Mariatos G, Zacharatos P, Kotsinas A, Liloglou T, Foukas P, Kanavaros P, Kastrinakis NG, Vassilakopoulos T, Vogiatzi T, Field JK, and Kittas C. Association of allelic loss at the FHIT locus and p53 alterations with tumor kinetics and chromosomal instability in non-small cell lung carcinomas (NSCLCs). J. Pathol., 193: 55-65, 2001.
22. Huang Y, Garrison PN, and Barnes LD. Cloning of the schizosacharomyces pombe gene encoding diadenosine 5’,5”’-P1,P4-tetraphosphate (Ap4A) asymmetrical hydrolase: sequence similarity with histidine triad (HIT) protein family. Biochem. J., 312: 925-932, 1995.
23. Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW, Croce CM, Ohta M, and Huebner K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5’,5”’-P1,P3-triphosphate hydrolase. Biochemistry, 35: 11529-11535, 1996.
24. Mimori K, Druck T, Inoue H, Alder H, Berk L, Mori M, Huebner K, and Croce CM. Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc. Natl. Acad. Sci. USA, 96: 7456-7461, 1999.
25. Sutherland GR and Richards RI. Fragile sites cytogenetic similarity with molecular diversity. Am. J. Hum. Genet., 64: 354-359, 1999.
26. Pace HC, Garrison PN, Robinson AK, Barnes LD, Draganescu A, Roesler A, Blackburn GM, Siprashvili Z, Croce CM, Huebner K, and Brenner C. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as active signaling form of Fhit. Proc. Natl. Acad. Sci. USA, 95: 5484-5489, 1998.
27. Kisselev LL, Justesen J, Wolfson AD, and Frolova LY. Diadenosine oligophosphates (ApnA), a novel class of signalling molecules? FEBS Letters, 427: 157-163, 1998.
28. Fong LY, Fidanza V, Zanesi N, Lock LF, Siracusa LD, Mancini R, Siprashvili Z, Ottey M, Martin SE, Druck T, McCue PA, Croce CM, and Huebner K. Muir-Torre-like syndrome in Fhit-deficient mice. Proc. Natl. Acad. Sci. USA, 97: 4742-4747, 2000.
29. Zanesi N, Fidanza V, Fong LY, Mancini R, Druck T, Valtieri M, Ruediger T, McCue PA, Corce CM, and Huebner K. The tumor spectrum in FHIT-deficient mice. Proc. Natl. Acad. Sci. USA, 98: 10250-10255, 2001.
30. Ji L, Fang B, Yen N, Fong K, Minna JD, and Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res., 59: 3333-3339, 1999.
31. Ishii H, Dumon KR, Vecchione A, Trapasso F, Mimori K, Alder H, Mori M, Sozzi G, Baffa R, Huerber K, and Croce CM. Effect of adenoviral transduction of the fragile histidine triad gene into esophageal cancer cells. Cancer Res., 61: 1578-1584, 2001.
32. Dumon KR, Ishii H, Vecchione A, Trapasso F, Baldassarre G, Chakrani F, Druck T, Rosato EF, Williams NN, Baffa R, During MJ, Huebner K, and Croce CM. Fragile histidine triad expression delays tumor development and induces apoptosis in human pancreatic cancer. Cancer Res., 61: 4827-4836, 2001.
33. Dumon KR, Ishii H, Fong LY, Zanesi N, Fidanza V, Mancini R, Vecchione A, Baffa R, Trapasso F, During MJ, Huebner K, and Croce CM. FHIT gene therapy prevents tumor development in Fhit-deficient mice. Proc. Natl. Acad. Sci. USA, 98: 3346-3351, 2001.
34. Birrer MJ, Hendricks D, Farley J, Sundborg MJ, Bonome T, Walts MJ, and Geradts J. Abnormal Fhit expression in malignant and premalignant lesions of the cervix. Cancer Res., 59: 5270-5274, 1999.
35. Ingvarsson S, Agnarsson BA, Sigbjornsdottir BI, Kononen J, Kallioniemi OP, Barkardottir RB, Kovatich AJ, Schwarting R, Hauck WW, Huebner K, and McCue PA. Reduced Fhit expression in sporadic and BRCA2-linked breast carcinomas. Cancer Res., 59: 2682-2689, 1999.
36. Mandai M, Konishi I, Kuroda H, Nanbu K, Matsushita K, Yura Y, Hamid AA, and Mori T. Expression of abnormal transcripts of the FHIT (fragile histidine triad) gene in ovarian carcinoma. Eur. J. Cancer, 34: 745-749, 1998.
37. Ozaki K, Enomoto T, Yoshino K, Fujita M, Buzard GS, Kawano K, Yamasaki M, and Murata Y. Impaired FHIT expression characterizes serous ovarian carcinoma. Brit. J. Cancer, 85: 247-254, 2001.
38. Yoshino K, Enomoto T, Nakamura T, Nakashima R, Wada H, Saitoh J, Noda K, and Murata Y. Aberrant FHIT transcripts in squamous cell carcinoma of the uterine cervix. Int. J. Cancer, 76: 176-181, 1998.
39. Lee SH, Kim WH, Kim HK, Woo KM, Nam HS, Kim HS, Kim JG, and Cho MH. Altered expression of the fragile histidine triad gene in primary gastric adenocarcinomas. Biochem. & Biophys. Res. Commun., 284: 850-855, 2001.
40. Geradts J, Fong KM, Zimmerman PV, and Minna JD. Loss of Fhit expression in non-small-cell lung cancer: correlation with molecular genetic abnormalities and clinicopathological features. Brit. J. Cancer, 82: 1191-1197, 2000.
41. Tokuchi Y, Kobayashi Y, Hayashi SI, Hayashi M, Tanimoto K, Hashimoto T, Nishida K, Ishikawa Y, Nakagawa K, Satoh Y, Yamamoto M, and Tsuchiya E. Abnormal FHIT transcripts found in both lung cancer and normal lung tissue. Genes, Chromos. and Cancer, 24: 105-111, 1999.
42. Tanaka H, Shimada Y, Harada H, Shinoda M, Hatooka S, Imamura M, and Ishizaki K. Methylation of the 5’ CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res., 58: 3429-3434, 1998.
43. Zoechbauer-Mueller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R, Virmani AK, Milchgrub S, Gazdar AF, and Minna JD. 5’ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res., 61: 3581-3585, 2001.
44. Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, and Brown RS. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med., 301: 592-595, 1979.
45. Druck T, Kastury K, Hadaczek P, Podolski J, Toloczko A, Sikorski A, Ohta M, LaForgia S, Lasota J, and McCue P. Loss of heterozygosity at the familial RCC t(3;8) locus in most clear cell renal carcinomas. Cancer Res., 55: 5348-5353, 1995.
46. Mao L, Lee JS, Kurie JM, Fan YH, Lippman SM, Lee JJ, Ro JY, Broxson A, Yu R, Morice RC, Kemp BL, Khuri FR, Walsh GL, Hittelman WN, and Hong WK. Clonal genetic alterations in the lungs of current and former smokers. J. Natl. Cancer Inst., 89: 857-862, 1997.
47. Razin A and Shemer R. DNA methylation in early development. Hum. Mol. Genet., 4: 1751-1755, 1995.
48. Razin A and Cedar H. DNA methylation and gene expression. Microbiol. Rev., 55: 451-458, 1991.
49. WHO. Histological typing of lung tumors. Am. J. Clin. Pathol., 77: 123-126, 1982.
50. Mountain CF. A new international staging system for lung cancer. Chest, 89: 225-233, 1986.
51. Lee ET. Statistical methods for survival data analysis, 2nd ed. New York: John Wiley& Sons, Inc., pp. 1-7, 1992.
52. Kaplan EL and Meier P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc., 53: 457-481, 1958.
53. The Lifetest Procedure. In: SAS technical report: P-179, additional SAS/STAT procedures, release 6.03. Cary, NC: SAS Institute, 49-90, 1988.
54. Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, and Pastorino U. Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients: A prospect for early diagnosis. Clin. Cancer Res., 5: 2689-2692, 1999.
55. Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM, and Huebner K. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell, 84: 587-597, 1996.
56. Thiagalingam S, Lisitsyn NA, Hamaguchi M, Wigler MH, Willson JKV, Markowitz SD, Leach FS, Kinzler KW, and Vogelstein B. Evaluation of the FHIT gene in colorectal cancers. Cancer Res., 56: 2936-2939, 1996.
57. Skopelitou AS, Gloustianou G, Bai M, and Huebner K. FHIT gene espression in human urinary bladder transitional cell carcinomas. In Vivo, 15: 169-173, 2001.
58. Virgilio L, Shuster M, Gollin SM, Veronese ML, Ohta M, Huebner K, and Croce CM. FHIT gene alterations in head and neck squamous cell carcinomas. Proc. Natl. Acad. Sci. USA, 93: 9770-9775, 1996.
59. Deng YF, Tian F, Lu YD, Chen ZC, Xie DH, Yang XM, and Shao XY. Mutation and abnormal expression of the fragile histidine triad gene in nasopharyngeal carcinoma. Laryngoscope, 111: 1589-1592, 2001.
60. Peters UR, Hasse U, Oppliger E, Tschan M, Ong ST, Rassool FV, Borisch B, Tobler A, and Fey MF. Aberrant FHIT mRNA transcripts are present in malignant and normal haematopoiesis, but absence of Fhit protein is restricted to leukaemia. Oncogene, 18: 79-85, 1999.
61. Albitar M, Manshouri T, Gidel C, Croce CM, Kornblau S, Pierce S, and Kantarjian HM. Clinical significance of fragile histidine triad gene expression in adult acute lymphoblastic leukemia. Leukemia Res., 25: 859-864, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top