王秀密(民76):代數的診斷教學。科學教育月刊,100,33-35。
江佳惠(民90):以幾何面積為類比物教授國一代數乘法公式之研究。國立彰化師範大學科學教育研究所碩士論文。李儼(民72):中國古代數學簡史,p304。台北市:九章出版。
林清山(民82)譯:教育心理學-認知取向(Richard E. Mayer1987著),p160。台北市:遠流。
林清山、張景媛(民83):國中生代數應用題教學策略效果之評估。國立台灣師
範大學教育心理與輔導系教育心理學報,27期,36-63。
林靜雯(民89):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立台灣師範大學科學教育研究所碩士論文。邱美虹(民89):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。洪萬生(民80):孔子與數學:一個人文的懷想,p55,pp93-115。台北市:明文。
洪萬生(民85):數學史與代數學習。科學月刊,27(7),560-567。
袁媛(民82):國中一年級學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學數學教育研究所碩士論文。國立編譯館(民86):國民小學數學教學指引第十一冊。
國立編譯館(民86):國民小學數學課本第一∼十一冊。
國立編譯館(民86):國民中學數學教師手冊第一冊。
張素鎔(民76):初等代數的學習困難。科學教育月刊,100,23-29。
張勝和(民84):乘法公式理解之研究以國中生為例。國立彰化師範大學科學教育研究所碩士論文。張景媛(民83):數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導系教育心理學報,27,175-200。教育部統計處(民86):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十五學年度第一學期)。
教育部統計處(民87):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十六學年度第一學期)。
教育部統計處(民90):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十九學年度第一學期)。
郭汾派、林光賢、林福來(民78):國中生文字符號概念的發展。國科會專題研究計畫報告,NSC76-0111-S003-08、NSC77-0111-S003-05A。
曾月紅(民85):符號學與認知學習、科際整合、教育研究的關係。教育資料與研究,9,66-68。黃幸美(民90):生活數學之教學理念與實務。教育研究月刊,91,63-73。蔡聰明(民84):從代數看算術。科學月刊,29(2),149。戴文賓、邱守榕(民88):國一學生由算術領域轉入代數領域呈現的學習現象與特徵。科學教育,10,148-175。謝孟珊(民89):以不同符號表徵未知數對國二學生解方程式表現之探討。國立台北師範學校數理教育研究所碩士論文。謝新傳(民89):由現代國民應有的數學素養談九年一貫教育。中等教育,51(6),136-141。
謝豐瑞(民84):數學教育指標研究-國中代數技能與解題能力學習進展指標, 國科會專題研究計畫,NSC 84-2511-S-003-B14,33-37。
魏金財(民81):兒童對雨量之概念及其概念之改變類型。國教學報,4,225-256。Carraher, D., Schliemann, A. D. & Brizuela, B. (2001, in press). Can young students operate on unknowns? In Proceedings of the XV International Conference for the Psychology of Mathematics Education. Utrecht, Holland, July, 10 pp.
Elliott, B., Oty, K., Mcarthur, J., & Clark, B. (2001).The effect of an interdisciplinary algebra/science course on students’ problem solving skills, critical thinking skills and attitudes towards mathematics. International Journal of Mathematical Education in Science and Technology, 32, 811-816.
Harper, E. W. (1987). Ghosts of Diophantus. Educational studies in mathematics, 18, 75-90.
Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational studies in mathematics, 27, 59-78.
Hiebert, J. (1988). A theory of developing competence with written mathematical symbols. Educational Studies in Mathematics, 19, 333-355.
Hweson, P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for conceptual change. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 199-218). Dordrecht ; Boston : Kluwer Academic.
Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.
Küchemann, D. (1981). Children’s understanding of numerical variables. Mathematics in school, 7(4), 23-26.
Lee, L., & Wheeler, D. (1989). The arithmetic connection. Education Studies in
Mathematics, 20, 41-54.
MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation:
11-15. Educational Studies in Mathematics, 33, 1-19.
Malvern, D. (2000). Mathematical Models in Science. In J. K. Gilbert & C.J. Boulter (eds.), Developing Models in Science Education (pp. 59-90). Dordrecht ; Boston : Kluwer.
Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557-561.
Philipp, R. A., & Schappelle, B. P. (1999). Algebra as Generalized Arithmetic: Starting with the Known for a Change. Mathematics Teacher, 92(4), 310-316.
Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond Cold Conceptual Change: The Role of Motivational Beliefs and Classroom Contextual Factors in the Process of Conceptual Change. Review of Educational Research, 63(2), 167-199.
Pintrich, P. R. (1999). Motivational Beliefs as Resources for and Constraints on
Conceptual Change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New
Perspectives on Conceptual Change (pp. 33-50). New York: Pergamon.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation
of a scientific conception: toward a theory of conceptual change. Science education, 66(2), 211-227.
Rubenstein, R. N., & Thompson, D. R. (2001). Learning Mathematical Symbolism:
Challenges and Instructional Strategies. Mathematics Teacher, 94(4), 265-271.
Ryan, A. M., & Patrick, H. (2001). The Classroom Social Environment and Changes in Adolescents’ Motivation and Engagement During Middle School. American Educational Research Journal, 38, 437-460.
Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification- The case of algebra. Educational studies on mathematics, 26, 191-228.
Skemp, R. R. (1987). Symbols. In The psychology of learning mathematics(pp. 46-65). Hillsdale, NJ: Lawrence Erlbaum Associates.
Stacey, K., & MacGregor, M. (1997). Ideas about symbolism that students bring to algebra. Mathematics Teacher, 90(2), 110-113.
Tall, D. O., Gray, E. M., Ali, M. B, Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto, M. M., Thomas, M. O., & Yusof, Y. (2001). Symbols and the Bifurcation between Procedural and Conceptual Thinking. Canadian Journal of Science, Mathematics and Technology Education, 1, 80-104.
Tirosh, D., Even, R., & Robinson, N. (1998). Simplifying alegebraic expressions: Teacher awareness and teaching approaches. Educational Studies in Mathematics, 35, 51-64.
Usikin, Z. (1997). Doing algebra in grades K-4. Teaching Children Mathematics, 3(6), 346-358.
Verschaffel, L., Corte, E., & Lasure, S. (1999). Children’s Conception about the Role of Real-World Knowledge in Mathematical Modelling: Analysis and Improvement. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New Perspectives on Conceptual Change (pp. 175-189). New York : Pergamon.