|
[1] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “ From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, pp. 643-660, 2001. [2] A. Shashua, and T. Riklin-Raviv, “ The quotient image: class-based re-rendering and recognition with varying illuminations,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, pp. 129-139, 2001. [3] A. S. Tolba and A. N. Abu-Rezq, “Combined classifiers for invariant face recognition,” Proc. of International Conference on 1999, pp. 350-359, 1999. [4] C. Liu, H. Wechsler, ”A shape- and texture- based enhanced fisher classifier for face recognition,” IEEE Trans. on Image Processing, vol. 10, pp. 598-608, 2001. [5] E. Demir, L. Akarun, E. Alpaydin, “Two-stage approach for pose invariant face recognition,” Proc. of 2000 IEEE International Conference, vol. 4, pp. 2342-2344, 2000. [6] F. M. H. Ahmad, A. ; C. C. Lim, ”Face recognition system based on neural networks and fuzzy logic,” International Conference on Neural Networks, vol. 3, pp. 1638—1643, 1997. [7] C. F. Bobis, C. R. Gonzalez, A. Jose, I. Alvarez, J. M. Enguita, ” Face recognition using binary thresholding for features extraction”, Proc. of 1999 IEEE International Conference on Image Analysis and Processing, pp: 1077 —1080, 1999. [8] F. Y. Shih, S. S. Chen, “Adaptive Document Block Segmentation and Classification,” IEEE Trans. on System, Man, and Cybernetics- Part B, vol. 26, pp. 797-802, 1996. [9] J. Daugman, “Face and Gesture recognition: Overview”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 675-676, 1997. [10] J. H. Chuang, J. S. Liu and C. S. Wan, ”Face recognition using Relative affine structure”, Proc of 2001 CVGIP, 2001. [11] L. Wiskott, J. M. Fellous, N. Küger, and C. V. D. Malsuburg, ’’Face recognition by elastic bunch graph matching”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 775-779, 1997. [12] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591, 1991. [13] A. R. Mirhosseini, C. H. Y. Chen, T. Pham, “Human face recognition: a minimal evidence approach,” Computer Vision, 1998. Sixth International Conference on, 1998, pp. 652-659, 1998. [14] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Systems, Man, and Cybernetics, vol. 9, pp. 62-66, 1979. [15] D. V. Olivier and A. Stetan, “Line-based face recognition under varying pose,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, pp. 1081-1088, 1999. [16] D. W. Purnell, C. Nieuwoudt, E. C. Botha, ’’Face recognition in a heterogeneous population,” Proc. of ISIE ''98. IEEE International Symposium, vol. 2, pp. 594-599, 1998. [17] P. J. Phillips, ”Matching pursuit filters applied to face identification,” IEEE Trans. on Image Processing, vol. 7, pp. 1150-1164, 1998. [18] R. Brunelli, T. Poggio, ”Face recognition: Features versus Templates,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, pp.1042-1052, 1993. [19] R. Chellappa, C. L. Wilson and S. Sirohey, “Human and Machine Recognition of Faces: A survey,” Proc. IEEE, vol. 83, pp. 705-740, 1995 [20] S. Z. Li, and J. Lu, “Face recognition using the nearest feature line method,” IEEE Trans. on Neural Networks, vol. 10, pp. 439-443, 1999. [21] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, “Face recognition: a convolutional neural network approach,” IEEE Trans. on Neural Networks, vol. 8, pp. 98-113, 1997. [22] S. H. Lin, S.Y. Kung, L.J. Lin, “Face recognition/detection by probabilistic decision-based neural network,” IEEE Trans. on Neural Networks, vol. 8, pp. 114-132, 1997. [23] T. Sim, R. Sukthankar, M. Mullin, S. Baluja, ”Memory-based face recognition for visitor identification,” Proc. of IEEE Conference, pp. 214-220, 2000. [24] T. E. d. Campos, R.S. Feris, and R.M.C. Junior, ”Eigenfaces versus eigeneyes: first steps toward performance assessment of representations for face recognition,” Lecture Notes in Artificial Intelligence, vol. 1796, pp. 197-206, 2000. [25] W. Y. Zhao, and R. Chellappa, "Illumination Insensitive Face Recognition Using Symmetric Shape-from-Shading," IEEE Conference on Computer Vision and Pattern Recognition, pp.286-293, 2000. [26] X. Mu; M. Artiklar, M. H. Hassoun, P. Watta, “Training algorithms for robust face recognition using a template-matching approach,” Neural Networks, 2001. Proceedings. IJCNN ''01. International Joint Conference on 2001, vol. 4, pp. 2877—2882, 2001. [27] Y. K. Ham, S.Y. Lee, and R.H. Park, “Fuzzy-based recognition of human front faces using the trapezoidal membership function”, Proc. of 1995 IEEE International Conference, vol. 4, pp. 1799-1806, 1995. [28] Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the problem of compensating for changes in illumination direction,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 721-732, 1997. [29] Y. S. Huang, Y. H. Tsai, C. M. PengWu, C. Y. Liu, S. W. Jeng, C. C. Chang, “A novel light compensation approach based on subtracting background illumination intensity distribution for face recognition,” Proc of 2001 CVGIP, 2001. [30] Olivetti & Oracle Research Laboratory, The Olivetti & Oracle Research Laboratory Face Database of Faces, http://www.cam-orl.co.uk/facedata- base.html.
|