跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士譽
研究生(外文):Lin Shih-Yu
論文名稱:利用一維特徵對不同角度、表情與光源之臉部影像進行辨識
論文名稱(外文):Face Recognition: Using 1-Dimension Feature
指導教授:李忠謀李忠謀引用關係
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:資訊教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:63
中文關鍵詞:臉部辨識一維特徵
外文關鍵詞:face recognitionone-dimensional features
相關次數:
  • 被引用被引用:2
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一個可不受不同拍攝角度、表情或光源影響之臉部影像辨識方法。我們對臉部影像進行兩次影像二元化後,再將臉部輪廓橢圓化以擷取臉部輪廓。而利用臉部特徵之位置關係,即可定位出理想且具有不受外物遮蔽及包含重要臉部資訊等特性之臉部中心點─鼻尖。而臉部的特徵取自於從臉部中心點至臉部輪廓之lattices,人臉之辨識則簡化為lattice特徵之比對。本實驗以ORL臉部影像資料庫內之影像作為實驗資料,實驗結果顯示,上述理論方法能有98%之正確辨識率,而在加入自動取得臉部中心點與臉部輪廓計算過程中之誤差後,辨識率仍能維持在90~93%之間。
This thesis proposes a face recognition method under varying pose, facial expression and lighting conditions. Binary thresholding techniques were used to identify important facial regions before fitting of ellipsoid to extract facial boundary. Using relative positional information of eyes and nose, the nose region is assumed and the nose top is localized and defined to be the center of the face. Lattice features between the face center and the boundary of the face are then computed. Face recognition is achieved by lattice matching. For the experiment, the ORL face database is used. Our experiments showed that 98% recognition rate could be achieved with the proposed face recognition model with precise feature extractions (human interactions). However, given our method for facial center localization and facial boundary detection, recognition rate of 93% can still be achieved.
第一章 緒論 1
第二章 相關技術探討 7
第三章 臉部輪廓擷取與臉部中心定位 12
第四章 臉部特徵萃取與辨識 36
第五章 實驗結果與討論 44
第六章 結論與未來研究 58
[1] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “ From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, pp. 643-660, 2001.
[2] A. Shashua, and T. Riklin-Raviv, “ The quotient image: class-based re-rendering and recognition with varying illuminations,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, pp. 129-139, 2001.
[3] A. S. Tolba and A. N. Abu-Rezq, “Combined classifiers for invariant face recognition,” Proc. of International Conference on 1999, pp. 350-359, 1999.
[4] C. Liu, H. Wechsler, ”A shape- and texture- based enhanced fisher classifier for face recognition,” IEEE Trans. on Image Processing, vol. 10, pp. 598-608, 2001.
[5] E. Demir, L. Akarun, E. Alpaydin, “Two-stage approach for pose invariant face recognition,” Proc. of 2000 IEEE International Conference, vol. 4, pp. 2342-2344, 2000.
[6] F. M. H. Ahmad, A. ; C. C. Lim, ”Face recognition system based on neural networks and fuzzy logic,” International Conference on Neural Networks, vol. 3, pp. 1638—1643, 1997.
[7] C. F. Bobis, C. R. Gonzalez, A. Jose, I. Alvarez, J. M. Enguita, ” Face recognition using binary thresholding for features extraction”, Proc. of 1999 IEEE International Conference on Image Analysis and Processing, pp: 1077 —1080, 1999.
[8] F. Y. Shih, S. S. Chen, “Adaptive Document Block Segmentation and Classification,” IEEE Trans. on System, Man, and Cybernetics- Part B, vol. 26, pp. 797-802, 1996.
[9] J. Daugman, “Face and Gesture recognition: Overview”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 675-676, 1997.
[10] J. H. Chuang, J. S. Liu and C. S. Wan, ”Face recognition using Relative affine structure”, Proc of 2001 CVGIP, 2001.
[11] L. Wiskott, J. M. Fellous, N. Küger, and C. V. D. Malsuburg, ’’Face recognition by elastic bunch graph matching”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 775-779, 1997.
[12] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591, 1991.
[13] A. R. Mirhosseini, C. H. Y. Chen, T. Pham, “Human face recognition: a minimal evidence approach,” Computer Vision, 1998. Sixth International Conference on, 1998, pp. 652-659, 1998.
[14] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Systems, Man, and Cybernetics, vol. 9, pp. 62-66, 1979.
[15] D. V. Olivier and A. Stetan, “Line-based face recognition under varying pose,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, pp. 1081-1088, 1999.
[16] D. W. Purnell, C. Nieuwoudt, E. C. Botha, ’’Face recognition in a heterogeneous population,” Proc. of ISIE ''98. IEEE International Symposium, vol. 2, pp. 594-599, 1998.
[17] P. J. Phillips, ”Matching pursuit filters applied to face identification,” IEEE Trans. on Image Processing, vol. 7, pp. 1150-1164, 1998.
[18] R. Brunelli, T. Poggio, ”Face recognition: Features versus Templates,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, pp.1042-1052, 1993.
[19] R. Chellappa, C. L. Wilson and S. Sirohey, “Human and Machine Recognition of Faces: A survey,” Proc. IEEE, vol. 83, pp. 705-740, 1995
[20] S. Z. Li, and J. Lu, “Face recognition using the nearest feature line method,” IEEE Trans. on Neural Networks, vol. 10, pp. 439-443, 1999.
[21] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, “Face recognition: a convolutional neural network approach,” IEEE Trans. on Neural Networks, vol. 8, pp. 98-113, 1997.
[22] S. H. Lin, S.Y. Kung, L.J. Lin, “Face recognition/detection by probabilistic decision-based neural network,” IEEE Trans. on Neural Networks, vol. 8, pp. 114-132, 1997.
[23] T. Sim, R. Sukthankar, M. Mullin, S. Baluja, ”Memory-based face recognition for visitor identification,” Proc. of IEEE Conference, pp. 214-220, 2000.
[24] T. E. d. Campos, R.S. Feris, and R.M.C. Junior, ”Eigenfaces versus eigeneyes: first steps toward performance assessment of representations for face recognition,” Lecture Notes in Artificial Intelligence, vol. 1796, pp. 197-206, 2000.
[25] W. Y. Zhao, and R. Chellappa, "Illumination Insensitive Face Recognition Using Symmetric Shape-from-Shading," IEEE Conference on Computer Vision and Pattern Recognition, pp.286-293, 2000.
[26] X. Mu; M. Artiklar, M. H. Hassoun, P. Watta, “Training algorithms for robust face recognition using a template-matching approach,” Neural Networks, 2001. Proceedings. IJCNN ''01. International Joint Conference on 2001, vol. 4, pp. 2877—2882, 2001.
[27] Y. K. Ham, S.Y. Lee, and R.H. Park, “Fuzzy-based recognition of human front faces using the trapezoidal membership function”, Proc. of 1995 IEEE International Conference, vol. 4, pp. 1799-1806, 1995.
[28] Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the problem of compensating for changes in illumination direction,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, pp. 721-732, 1997.
[29] Y. S. Huang, Y. H. Tsai, C. M. PengWu, C. Y. Liu, S. W. Jeng, C. C. Chang, “A novel light compensation approach based on subtracting background illumination intensity distribution for face recognition,” Proc of 2001 CVGIP, 2001.
[30] Olivetti & Oracle Research Laboratory, The Olivetti & Oracle Research Laboratory Face Database of Faces, http://www.cam-orl.co.uk/facedata- base.html.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top