|
【1】 J. C. Culberson and J. Schaeffer, Efficiently searching the 15-puzzle, Technical report, Department of Computer Science, University of Alberta, 1994. 【2】 M. Gardner, The Mathematical Puzzles of Sam Loyd (Dover, New York, 1959). 【3】 L. E. Horden, Sliding Piece Puzzles (Oxford University Press, Oxford, 1986). 【4】 R. E. Korf, Depth-first iterative deepening: An optimal admissible tree search, Artificial Intelligence 27 (1985), 97-109. 【5】 R. Korf and L. Taylor, Finding optimal solutions to the twenty-four puzzle, in Proceedings of AAAI-96 (1996), 1202-1207. 【6】 D. Kornhauser, G. Miller and P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation groups and applications, in Proc. 25th Ann. Symp. on Foundations of Computer Science (IEEE Computer Society Press, Silver Spring, MD, 1984), 241-250. 【7】 D. Michie, J. G. Fleming and J. V. Oldfied, A comparison of heuristic, interactive and unaided methods of solving a shortest-route problem, Machine Intelligence, Vol. 3 (1968), 245-255. 【8】 I. Parberry, A real-time algorithm for the (n2-1)-puzzle, Information Processing Letters, Vol. 56, (1995), 23-28. 【9】 D. Ratner and M.K. Warmuth, The (n2-1)-puzzle and related relocation problems, J. Symbolic Comput. 10 (1990), 11-137. 【10】 A. Reinefeld, Complete solution of the eight-puzzle and the benefit of node ordering in IDA*, in Proceedings of the International Joint Conference on Artificial Intelligence (1993), 248-253. 【11】 J. Schaeffer, The History Heuristic and Alpha-Beta Search Enhancements in Practice, IEEE Transactions on Pattern Analysis and Machine Intelligence (1989), 1203-1212. 【12】 P. D. A. Schofield, Complete solution of the eight puzzle, Machine Intelligence, Vol. 1 (1967), 125-133. 【13】 S. Singh著,薛密譯, Fermat’s last theorem, 台灣商務印書館(1998), 122-125. 【14】 W. W. Storey and W. E. Storey, Notes on the 15 puzzle, American Journal of Mathematics 2 (1879), 399-404. 【15】 http://www.cut-the-knot.com/pythagoras/history15.html.
|