|
[1] 陳慶瑞, 巴納赫空間下模糊隨機變數的強大數法則與中央極限定理, 國立台灣師範大學, 1995. [2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12. [3] Z. Artstein, and R. A. Vitale, A strong law of large numbers for random compact sets. Ann.Probab. 3 (1975) 879-882. [4] Z. Artstein, On the calculus of set valued-functions, Indiana Univ. Math. 24 (1974), 433-441. [5] C. L. Byrne, Remarks on the set valued integrals of Debreu and Aumann, J. Math. Anal. appl. 62 (1978), 243-246. [6] H. T. Banks and M. Jacobs, A differential calculus for Multifunctions, J. Math. Anal. Appl. 29(1970), 246-272. [7] A. Colubi, Lopez-Diaz, M., Dominguez-Menchero, Gil, A generalized Strong Law of Large Numbers. Probab. Theory Related Fields 114 (1999), 401-417. [8] C. Cambridge Philos. N.S. Papageorgiou, On the Theory of Banach space valued multifunctions 2. Set Valued martingales and set valued measures, J. Multivariate Anal. 17 (1985) 207-227. [9] R. Durrett, Probability, Theory and Examples, second ed., Duxbury Press, 1995.\\ $[10]$ G. Debreu, Integration of correspondence, in Proc. Fifth Berkeley Symp. Math. Statist. Prob., p.351-372, Univ. of California Press, Berkeley, 1966. [11] Hiai, F., and Umegaki, H. Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977)149-182.\ [12] F. Hia\"{l}, Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (2) (1985) 613-627. [13] H. Inoue, A strong law of large numbers for fuzzy random sets. Fuzzy Set and Systems 41 (1991), 285-291.\ [14] E.P.Klement, M.L.Puri, and D.A.Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Statist. Soc. London A 407 (1986),171-182. [15] H.Kwakernaak, Fuzzy random variables-I. Definitions and theorems, Inform. Sci. 15 (1978)1-29.\ [16] C. Kuratowski, Topology vol. I, Academic press, New York,(1966). [17] K$\ddot{o}$rner, R., On the variance of fuzzy random variables. Fuzzy Set and Systems 92(1997),
ar\noindent\hspace{8mm}83-93.\ [18] Kim and Joo, Topological Properties on the space of fuzzy sets, J. Math. Anal. Appl.
ar\noindent\hspace{8mm}246, (2000) 576-590.\ [19] G. Krupa, Convergence of unbounded multivalued supermartingales in the Mosco and Slice topologies, J. Convex Anal. 5 (1) (1998) 187-198.\ [20] M. Lopez-Diaz and M. Gil, Approximating integrably bounded fuzzy random variables in terms of the generalized Hausdorff metric, Inform. Sci. 104 (1998) , 279-291. [21] R. Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3 (1980), 291-310. [22] S. Li, Y. Ogura, Convergence of set valued sub- and supermartingales in the
ar\noindent\hspace{8mm} Kurtowski-Mosco Sense, Ann. Probab. 26 (3) (1998) 1384-1402. [23] R. G. Laha, V.K.Rohatgi, Probability theory, Wiley, New York,1979. [24] N.N. Lyashenko, On limit theorems for sums of independent compact random subsets in the Euclidean space, Zap, Nauchn. Sem. Leningrad Otdel. Math. Inst. Steklov 85, 1979 113-128.\ [25] G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975. [26] ILy. S. Molchanov, On strong laws of large numbers for random upper semicontinuous functions, J. Math. Anal. Appl. 235 (1999),349-355. [27] Madan L. Puri , Convergence theorem for fuzzy martingales,J. Math. Anal. Appl. 160 (1991),107-122. [28] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl.114 (1986), 409-422. [29] J. B. Prolla, Approximation of continuous convex-cone-valued functions by monotone operators,Studia Math. 102 (1992), 175-192. [30] M. Puri and D. Raldscu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983), 552-558 [31] M. L. Puri, D. A. Ralescu, Limit theorems for random compact sets in Banach spaces,
ar\noindent\hspace{8mm}Math. Proc. Cambridge Philos. Soc. 97 (1985) 151-158. [32] H.R$\dot{a}$dstr$\ddot{o}$m, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169. [33] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. [34] N. M. Stojakovic, Fuzzy conditional expectation, Fuzzy Sets and Systems 52 (1992),
ar\noindent\hspace{8mm}53-60.\\ $[35]$ A.V.Skorokhod, Limit theorems for stochastic processes,Theory Probab.Appl.1 (1956),
ar\noindent\hspace{8mm}261-290.\ [36] R. A. Vitale, Approximations of convex set-valued functions, J. Approx.
ar\noindent\hspace{8mm}Theory 26 (1979) 301-316.\ [37] Z. P. Wang, X.H. Xue, On convergence and closedness of multivalued martingales, Trans.
ar\noindent\hspace{8mm}Amer. Math. Soc. 341 (2) (1994) 807-827. [38] X. Xue, X. Wang, and L.Wu, On the convergence and representation of random fuzzy number integrals, Fuzzy Sets and Systems 103 (1999), 115-125. [39] Yuhu Feng, Convergence theorems for fuzzy random variables and fuzzy martingales, Fuzzy Set and Systems 103(1999) 435-441. [40] L. A. Zadeh, The concept of a linguistic variable and its applications in approximate reasoning,Inform. Sci. 8:199-251, 8:301-357; 9:43-80(1975). [41] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965) 238-353.
|