# 臺灣博碩士論文加值系統

(3.233.217.106) 您好！臺灣時間：2022/08/14 14:29

:::

### 詳目顯示

:
 Twitter

• 被引用:0
• 點閱:220
• 評分:
• 下載:26
• 書目收藏:0
 對於可測函數在不同空間的大數法則,已經有被建構很多版本在文獻中. 在這篇論文中,我們證明了模糊隨機變數在一個非分離度量空間的大數法則 (沒有假設相同分配).此外我們也介紹模糊馬亭戈,模糊子馬亭戈,和模糊超馬亭戈.我們最後證明一些關於模糊子馬亭戈的收斂結果.
 Many versions of the strong law of large numbers have been established in the literature for measurable functions taking values on different spaces. In this paper, we prove a strong law of large numbers (it is not assumed to be identically distributed) for fuzzy random variables on a nonseparable metric space. Further, fuzzy martingales are introduced, as well as fuzzy submartingales and supermartingales. We prove some convergence results for fuzzy submartingales.
 Abstract-----------------------------------1 １ Preliminaries and Notion-----------------2 1.1 Fuzzy set------------------------------8 1.2 Random compact set and Fuzzy Random 1.3 Support function----------------------22 ２ A Strong of Large Numbers for Fuzzy Random-27 ３ Convergence Theorem for fuzzy martingale--34 References---------------------------------39
 [1] 陳慶瑞, 巴納赫空間下模糊隨機變數的強大數法則與中央極限定理,國立台灣師範大學, 1995.[2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1-12.[3] Z. Artstein, and R. A. Vitale, A strong law of largenumbers for random compact sets. Ann.Probab. 3 (1975) 879-882.[4] Z. Artstein, On the calculus ofset valued-functions, Indiana Univ. Math. 24 (1974), 433-441.[5] C. L. Byrne, Remarks on the set valued integrals of Debreuand Aumann, J. Math. Anal. appl. 62 (1978), 243-246.[6] H. T. Banks and M. Jacobs, A differential calculus forMultifunctions, J. Math. Anal. Appl. 29(1970), 246-272.[7] A. Colubi, Lopez-Diaz, M., Dominguez-Menchero, Gil, Ageneralized Strong Law of Large Numbers. Probab. TheoryRelated Fields 114 (1999), 401-417.[8] C. Cambridge Philos.N.S. Papageorgiou, On the Theory of Banach space valuedmultifunctions 2. Set Valued martingalesand set valued measures, J. MultivariateAnal. 17 (1985) 207-227.[9] R. Durrett, Probability, Theory and Examples, second ed.,Duxbury Press, 1995.\\ $[10]$ G. Debreu, Integration ofcorrespondence, in Proc. Fifth Berkeley Symp. Math.Statist. Prob., p.351-372, Univ. of California Press, Berkeley,1966.[11] Hiai, F., and Umegaki, H. Integrals, conditionalexpectations and martingalesof multivalued functions. J. Multivariate Anal. 7 (1977)149-182.\ [12] F. Hia\"{l}, Convergence of conditional expectations andstrong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (2)(1985) 613-627.[13] H. Inoue, A strong law of large numbersfor fuzzy random sets. Fuzzy Set andSystems 41 (1991), 285-291.\ [14] E.P.Klement, M.L.Puri, and D.A.Ralescu, Limit theorems forfuzzy random variables, Proc. Roy.Statist. Soc. London A 407 (1986),171-182.[15] H.Kwakernaak,Fuzzy random variables-I. Definitions and theorems, Inform. Sci.15 (1978)1-29.\ [16] C. Kuratowski, Topology vol. I, Academic press, NewYork,(1966).[17] K$\ddot{o}$rner, R., On the variance offuzzy random variables. Fuzzy Set and Systems92(1997), ar\noindent\hspace{8mm}83-93.\ [18] Kim and Joo, Topological Properties on the space of fuzzysets, J. Math. Anal. Appl. ar\noindent\hspace{8mm}246, (2000) 576-590.\ [19] G. Krupa, Convergenceof unbounded multivalued supermartingales in the Mosco and Slicetopologies, J. Convex Anal. 5 (1) (1998) 187-198.\ [20] M.Lopez-Diaz and M. Gil, Approximating integrably bounded fuzzyrandom variables in terms of the generalized Hausdorff metric, Inform. Sci.104 (1998) , 279-291.[21] R. Lowen, Convex fuzzy sets, Fuzzy Sets and Systems 3(1980), 291-310.[22] S. Li, Y. Ogura, Convergence of set valued sub- andsupermartingales in the ar\noindent\hspace{8mm} Kurtowski-MoscoSense, Ann. Probab. 26 (3) (1998) 1384-1402.[23] R. G. Laha, V.K.Rohatgi, Probability theory, Wiley, New York,1979.[24] N.N. Lyashenko, On limit theorems for sums of independent compact random subsets in the Euclidean space, Zap, Nauchn. Sem.Leningrad Otdel. Math. Inst. Steklov 85, 1979 113-128.\ [25] G. Matheron, Random Sets and Integral Geometry, Wiley, NewYork, 1975.[26] ILy. S. Molchanov, On strong laws of largenumbers for random upper semicontinuous functions, J. Math. Anal. Appl. 235 (1999),349-355.[27] Madan L. Puri , Convergence theorem for fuzzymartingales,J. Math. Anal. Appl. 160(1991),107-122.[28] M. L. Puri and D. A. Ralescu, Fuzzyrandom variables, J. Math. Anal. Appl.114(1986), 409-422.[29] J. B. Prolla, Approximation of continuous convex-cone-valued functions by monotone operators,Studia Math. 102 (1992), 175-192.[30] M. Puri and D. Raldscu, Differentials of fuzzy functions,J. Math. Anal. Appl. 91 (1983),552-558[31] M. L. Puri, D. A. Ralescu, Limit theorems for randomcompact sets in Banach spaces, ar\noindent\hspace{8mm}Math. Proc.Cambridge Philos. Soc. 97 (1985) 151-158.[32] H.R$\dot{a}$dstr$\ddot{o}$m, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952) 165-169.[33] R. T. Rockafellar, Convex Analysis, Princeton UniversityPress, Princeton, NJ,1970.[34] N. M. Stojakovic, Fuzzy conditional expectation, Fuzzy Setsand Systems 52 (1992), ar\noindent\hspace{8mm}53-60.\\ $[35]$A.V.Skorokhod, Limit theorems for stochastic processes,TheoryProbab.Appl.1 (1956), ar\noindent\hspace{8mm}261-290.\ [36] R. A. Vitale, Approximations of convex set-valuedfunctions, J. Approx. ar\noindent\hspace{8mm}Theory 26 (1979)301-316.\ [37] Z. P. Wang, X.H. Xue, On convergence and closedness ofmultivalued martingales, Trans. ar\noindent\hspace{8mm}Amer.Math. Soc. 341 (2) (1994)807-827.[38] X. Xue, X. Wang, and L.Wu, On the convergence andrepresentation of random fuzzy number integrals, Fuzzy Sets and Systems 103 (1999), 115-125.[39] Yuhu Feng, Convergence theorems for fuzzy random variablesand fuzzy martingales, Fuzzy Set and Systems103(1999) 435-441.[40] L. A. Zadeh, The concept of a linguistic variable and itsapplications in approximate reasoning,Inform. Sci. 8:199-251, 8:301-357; 9:43-80(1975).[41] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965) 238-353.
 電子全文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 林至潔，1996，〈悲哀的浪漫主義者─龍瑛宗的另一個面貌〉，《聯合文學》十二卷十二期，頁118~121，1996年10月。 2 周芬伶，1999，〈龍瑛宗與杜南遠的自傳書寫〉頁78~99，《中國文化月刊》第 231期，1999年6月。 3 史書美，1994，〈中國當代文學中的女性自白小說〉，《當代》第95期（1994.3.1），頁108∼127。

 1 UndecidabilityofFinitenessConjectureforgeneralizedspectralradius 2 模糊迴歸分析中最小平方法之求解與應用 3 模糊方程式可解性之條件探討 4 模糊理論應用於預期價格上漲之存貨模式研究 5 模糊類神經系統於葛蘭碧法則之應用 6 模糊理論決策分析結構控制 7 非負矩陣集合之對角穩定性 8 用多重插補法估計廣義線性混合模型 9 無強制條件的擬變分不等式 10 國中生討論數樣式關係時表達理由能力之成長探究 11 中國清代1723~1820年間的借根方與天元術 12 國二學生學習線型函數時的概念表徵發展研究 13 有限體上的戴凡波問題 14 二項式超曲面的Hilbert-Kunz函數 15 利用矩陣形式解模糊關係方程式

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室