|
[1] S. Adly, D. Goeleven, D. Goeleven & M. Th´era, Recession mappings and nonco-ercive variational inequalities, Nonlinear Analysis, Theorey, Methods & Applica-tions, Vol 26(9),1573-1603 (1996). [2] H. Attouch, Z. Chbani & A. Moudafi, Recession operators and solvablity of vari-ational problems, Preprint, Laboratoire d’Analyse Convex, Universit´e de Mont-pellier II, 1993. [3] C. Baiocchi, F. Gastaldi & F. Tomarelli, In´equations variationelles non coercives, C.R. Acad. Sci. Paris 1229, 647-650(1984). [4] C. Baiocchi, G. Buttazzo, F. Gastaldi & F. Tomarelli, General existence theorems for unilateral problems in continum mechanics, Archs Ration. Mech. Analysis 100(2), 149-180(1988). [5] H. Br´ezis, Equations et in´equations non-lin´earies dans les espaces vectoriels en dualit´e, Annls. Inst. Fourier Univ. Grenoble 18(1) , 115-175(1968). [6] H. Br´ezis, L. Niremberg, & G. Stampacchia, A remark of Ky Fan’s minimax principle, Boll. Un. Mat. Ital. (4),6, 293-300(1972). [7] F. Browder, Nonlinear monotone operatrs and convex sets in Banach spaces, Bull. Am. math.Soc, 71, 780-785(1965). [8] F. Browder, Nonlinear maximal monotone mappings in Banach spaces, Math.Ann. 175, 81-113(1968). [9] F. Browder, Nonlinear operator and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., 18, Part 2 (the entire issue) , Am. Math. Soc., Providence, RI(1976). [10] A. Daniilidis & N. Hadjisavvas, Coercivity conditions and variational inequalities, Math.programming, 78, 305-314(1997). [11] F. B. Fabi´ an, Existence theorems for generalized noncoercive equilibrium prob-lems: The quasi-convex case, SIAM J. Optim., 11, No. 3, 675-690(2000). [12] F. B. Fabi´ an & W. Sosa, Existence of solutions for noncoercive pseudomonotone equilibrium problems, Math. Oper. Res., submitted. [13] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann., 142, 305-310(1961). [14] F. Gastaldi & F. Tomarelli, Some remarks on nonlinear and noncoercive varia-tional inequalities, Boll. Un. Mat. Ital. B (7), 1, 143-165(1987). [15] D. Goeleven, On the solvability of linear noncoercive variational inequality in seperable Hilbert spaces, J. Optim. Theory. Applic. 79 (1993). [16] D. Goeleven & M. Th´era, variational inequality and the existence of equilbrium state on a thin elastic plate, Serdica Math. J. 21 , 1001-1017(1995). [17] D. Goeleven & M. Th´era, Some global results for nonlinear eigenvalue problems governed by a variational inequality of von Karman type, Univ. Degli Studi di Milano, Quadeno 21, Univ. Degli Studi di Milano, Milan (1993). [18] D. Goeleven, V. H. Nguyen & M. Th´era, Nonlinear eigenvalue problems gov-erned by variational inequality of von Karman type: a degree theoric approach, Topological Methods in Nonlinear Analysis, 2, 235-276(1993). [19] D. Goeleven, V.H. Nguyen & M. Willem, Existence and multiplicity results for noncoercive unilateral problems, Bull. Aust. Math. Soc. 49, 489-498(1994). [20] N. Hadjisavvas & S. Schaible, Quasimonotonicity and pseudomonotonicity in variational inequalities and equilibrium problems, in Generalized Convexity, Gen-eralized Monotonicity : Recent Results, J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle, eds., Kluwer, Dordrecht, 257-275(1998). [21] P. T. Harker & J. S. Pang, Finite dimensional variational inequality and nonlin-ear complementarity problems: A survey of theory, algorithms and app;ications, Math.programming, 48, 161-220(1990). [22] S. Karamardian, Generalized complementarity problems, J. Optim. Theory Appl.,8, 161-168(1971). [23] S. Karamardian, Dulity in mathematical programming, J. Math. Anal. Appl., 20, 344-358(1967). [24] H. Kneser, Sur le Theoreme Fondamentale de al Theorie des Jeux, C.R. Acad. Sci. Paris 234, 2418-2420(1952). [25] U. Mosco, A remark on a theorem of F. E. Browder, J. Math, Anal. Appl., 20, 90-93(1967). [26] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ (1972). [27] M. H. Shih & K. K. Tan, Browder-Hartman-Stampacchia Variational Inequalities for Multi-valued Monotone Operators, J. Math. Anal. Appl., 134, 431-440(1988).
|