臺灣博碩士論文加值系統

(34.204.181.91) 您好！臺灣時間：2023/09/28 01:55

:::

詳目顯示

:

• 被引用:0
• 點閱:178
• 評分:
• 下載:9
• 書目收藏:0
 Phi係數的歷史相當悠久，它主要是用在兩個自然的二分類變項所形成的2×2列聯表，可以測量這兩個變項的關聯性。本論文的目的是把傳統上由兩個二分類變項所得的phi係數推廣到任意k個二分類變項，而推得 k*(k-1)/2 個phi係數滿足近似聯合常態分佈，並進而導出多個phi係數的聯合信賴區間，多維phi係數的雙尾檢定，模擬較小樣本的臨界值，並討論檢定力。
 The phi coefficient has been developed long ago. It is mainly used in the case of 2×2 contingency tables involving two variables that are dichotomous in nature. It can measure the association of the two dichotomous variables. In this thesis, we extend the traditional phi coefficient that formed by two variables to arbitrary k variables, and show that k*(k-1)/2 phi coefficients are asymptotically normal. Moreover, we derive confidence regions and two-sided test of mul-tivariate phi coefficients, simulate critical values with smaller sample size, and discuss the powers of tests.
 CONTENTS Abstract 1、Introduction 1.1 Literature review 1.2 Comparison of phi with other measures 2、Univariate phi coefficients 2.1 Asymptotic distributions of univariate phi coefficients 2.2 Confidence intervals and hypothesis testing 2.3 Properties of phi coefficient 3、Multivariate phi coefficients 3.1 Asymptotic distributions of multivariate phi coefficients 3.2 Confidence regions and hypothesis testing 4、Multiple comparisons 4.1 Scheffé's approach 4.2 Bonferroni's approach 4.3 One-at-a-time approach 5、Simulation 5.1 Critical values of small sample sizes 5.2 Power analysis 6、Applications 6.1 Example 6.2 Future study Appendix A、Referred theorems Appendix B、Some useful coefficients of contingency tables Appendix C、C+ + source code for five types of tests References
 References：1. Agresti, A. (1990), Categorical data analysis. McGraw-Hill, U.S.A.2. Bishop, Y.M.M. & Fienberg, S.E. & Holland, P.W. (1975), Discrete multivariate analysis: Theory and practice. MA:MIT Press, Cambridge.3. Carroll, J.B. (1961), “The nature of the data, or how to choose a correlation coefficient.” Psy-chometrika, V26:347~372.4. Conover, W.J. (1999), Practical nonparametric statistics.(3th), John Wiley & Sons,U.S.A.5. Cureton, E.E. (1959), “Note on .” Psychometrika, V24:89~91.6. Elliott, G.C. (1988), “Interpreting higher order interactions in log-linear analysis.” Psychologi-cal Bulletin, V103:121~130.7. Fleiss, J.L. (1981), Statistical methods for rates and proportions.(2th), John Wiley & Sons, New York.8. Gibbons, J.D. & Chakraborti, S. (1992), Nonparametric statistical inference.(3th), Marcel Dekker, New York.9. Glass, G.V. & Hopkins, K.D. (1996), Statistical methods in education and psychology.(3th), Allyn&Bacon, U.S.A.10. Goodman, L.A. & Kruskal, W.H. (1979), Measures of association for cross classifications. Springer-Verlag, U.S.A.11. Guilford, J.P. (1965), Fundamental statistics in psychology and education.(4th), McGraw-Hill, New York.12. Holley, J.W. & Guilford, J.P. (1964), “A note on the G index of agreement.” Educational and Psychological Measurement, V24:749~753.13. Howell, D.C. (1992), Statistical methods for psychology.(3th), PWS-KENT, U.S.A.14. Janson, S. & Vegelius, J. (1979), “On generalizations of the G index and the phi coefficient to nominal scales.” Multivariate Behavioral Research, V14:255~269.15. Janson, S. & Vegelius, J. (1980), “The relationship between the phi coefficient and the G in-dex.” Educational and Psychological Measurement, V40:569~574.16. Kendall, M.G. & Gibbons, J.D. (1990), Rank correlation methods.(5th), Edward Arnold, Lon-don.17. Lehmann, E.L. (1999), Elements of large-sample theory. Springer-Verlag, New York.18. Levy, S.G. (1968), Inferential statistics in the behavioral sciences. Holt, Rinehart & Winston, U.S.A.19. Lienert, G.A. & Reynolds, J. & Wall, K.D. (1979), “Comparing associations in two independ-ent fourfold tables.” Biometrika, V21, No5:473~491.20. Lord, F.M. & Novick, M.R. (1968), Statistical theories of mental test scores. Addison-Wesley, U.S.A.21. Miller, R.G. (1981), Simultaneous statistical inference.(2th), Springer-Verlag, New York.22. Nelson, T.O. (1984), “A comparison of current measures of the accuracy of feeling-of-knowing predictions.” Psychological Bulletin, V95, No1:109~133.23. Rao, C.R. (1973), Linear statistical inference and its applications.(2th), John Wiley & Sons, New York.24. Reynolds, H.T. (1977), The analysis of cross-classifications. Free Press, New York.25. Serfling, R.J. (1980), Approximation theorems of mathematical statistics. John Wiley & Sons, New York.26. Sewell, W.H. & Orenstein, A.M. (1965), “Community of residence and occupational choice.” The American Journal of Sociology, V70:551~563.27. Siegel, S. & Castellan, N.J. (1988), Nonparametric statistics for the behavioral sciences.(2th), McGraw-Hill, U.S.A.28. The CSMS Math Team, (1981), Children's understanding of mathematics: 11~16. Oxford London and Northampton, Great Britain.29. Wichern, D.W. & Johnson, R.A. (1998), Applied multivariate statistical analysis.(4th), Pren-tice-Hall, U.S.A.30. Yule, G.U. (1912), “On the methods of measuring association between two attributes.” Journal of the Royal Statistical Society, V75:579~642.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 統計推論 2 良率指標Spk的抽樣性質與樣本資訊下估計良率的精準度

 無相關期刊

 1 李朝世宗時期的朝鮮算學 2 變異型態的最小最大定理 3 中國1368-1806年間的勾股術發展之研究 4 OnhypoellipticityoftheCauchyRiemannoperatoronweaklypseudoconvexCRmanifolds 5 一個四階半線性拋物型方程的零邊界控制 6 一個非線性消失性問題相似解的存在性 7 國三學生突破因附圖造成之論證障礙的學習歷程之研究 8 於動態幾何環境下國中生動態心像建構與幾何推理之研究 9 三位學生教師數學教學概念轉變歷程的個案研究 10 一些三階非線性微分方程之解法 11 多枚偽幣問題之演算法設計與分析 12 多媒體網際網路動畫應用設計之研究 13 資訊科技融入國小環境教育課程之教學歷程研究 14 國家公園解說員環境教育與環境解說專業發展需求研究 15 大屯溪河川生態保育之環境行動發展歷程之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室