資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(44.201.72.250) 您好!臺灣時間:2023/10/04 18:15
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
李光祥
論文名稱:
OnhypoellipticityoftheCauchyRiemannoperatoronweaklypseudoconvexCRmanifolds
論文名稱(外文):
On hypoellipticity of the Cauchy Riemann operator on weakly pseudoconvex CR manifolds
指導教授:
林延輯
學位類別:
碩士
校院名稱:
國立臺灣師範大學
系所名稱:
數學研究所
學門:
數學及統計學門
學類:
數學學類
論文種類:
學術論文
論文出版年:
2002
畢業學年度:
90
語文別:
英文
論文頁數:
19
中文關鍵詞:
hypoelliptic
、
pseudoconvex
、
CR manifold
相關次數:
被引用:0
點閱:268
評分:
下載:6
書目收藏:0
On hypoellipticity of the @b operator on weakly
pseudoconvex CR manifold
Let D Cn, n 2, be a CR manifold with smooth boundary, and let r be
a smooth defining function for D. Hence, the set {Lk = @r
@zn
@
@zk − @r
@zk
@
@zn | k =
1, 2, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector
fields on the boundary bD. If D is strongly pseudoconvex, then bD is
strongly pseudoconvex CR manifold. For example, we consider the Siegel
upper half space
= {(z0, zn) 2 Cn | Imzn > |z0|2} Cn. The set
{Lk = @
@zk
+ 2izk
@
@zn | k = 1, · · · , n − 1} forms a global basis for the space of
tangential (1,0) vector fields on the boundary b
. If we choose T = −2i @
@t ,
then the Levi matrix is the identity matrix. Moreover, the surface b
is a
strictly pseudoconvex CR manifold. As coordinates for the surface we use
Hn = Cn−1 × R 3 (z0, t) 7! (z0, t + i|z0|2); the vector fields pull back to
Zk = @
@zk
+ izk
@
@t . The Heisenberg group Hn is a strictly pseudoconvex CR
manifold with type (1,0) vector fields spanned by Z1, . . . ,Zn−1. Then we can
get b = @b@
b+@
b@b is hypoelliptic on Hn for (0, q)-forms when 1 q n−1.
But hypoellipticity of @
b does not always hold on a pseudoconvex CR
manifold M which is not strongly pseudoconvex. For example, we consider
the domain D = {(z1, z2) 2 C2 | Imz2 > [ReZ1]m,m 4 is even}. Set
M to be the boundary bD, and the tangential (1,0) vector field on M is
Z = @
@z1
+ im
2 xm−1
1
@
@t , where x = Rez1 and z2 = t + is. Let S((z, t); (w, s))
be the Szeg¨o projection from L2(C × R) onto the kernel of Z. Define
the distribution K(z, t) = S((z, t); (0, 0)). Then we can prove that K is
not analytic away from 0. In the case M = {(z1, z2, z3) 2 C3 | Imz3 =
[Rez1]m +|z2|2,m 4 is even}, the tangential (1,0) vector fields are spanned
by Z1 = @
@z1
+im
2 xm−1
1
@
@t , and Z2 = @
@z2
+iz2
@
@t . Similarly, the Szeg¨o projection
S is the orthogonal projection from L2 onto {f 2 L2 | Z1f = Z2 = 0}.
Let J(z1, z2, t) = S((z1, z2, t), (0, 0, 0)). Then we can prove that J is not analytic
away from 0, too.
Now, we consider M = {(z1, z2) 2 C2 | Imz2 = xm,m 4 is even}. We
prove the failure of @b to be analytic hypoelliptic on M directly. We examine
f(x) = e2(x+xm) Rx
−1
e−4(s+sm)ds , and define
f(x + iy, t) = Z 0
−1
e−2ite−2i||1/myf(||1/mx) d .
A calculation shows @b@
bf = 0, but @
bf(0 − i, t) is not analytic at t = 0.
1
On hypoellipticity of the @b operator on weakly
pseudoconvex CR manifold
Let D Cn, n 2, be a CR manifold with smooth boundary, and let r be
a smooth defining function for D. Hence, the set {Lk = @r
@zn
@
@zk − @r
@zk
@
@zn | k =
1, 2, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector
fields on the boundary bD. If D is strongly pseudoconvex, then bD is
strongly pseudoconvex CR manifold. For example, we consider the Siegel
upper half space
= {(z0, zn) 2 Cn | Imzn > |z0|2} Cn. The set
{Lk = @
@zk
+ 2izk
@
@zn | k = 1, · · · , n − 1} forms a global basis for the space of
tangential (1,0) vector fields on the boundary b
. If we choose T = −2i @
@t ,
then the Levi matrix is the identity matrix. Moreover, the surface b
is a
strictly pseudoconvex CR manifold. As coordinates for the surface we use
Hn = Cn−1 × R 3 (z0, t) 7! (z0, t + i|z0|2); the vector fields pull back to
Zk = @
@zk
+ izk
@
@t . The Heisenberg group Hn is a strictly pseudoconvex CR
manifold with type (1,0) vector fields spanned by Z1, . . . ,Zn−1. Then we can
get b = @b@
b+@
b@b is hypoelliptic on Hn for (0, q)-forms when 1 q n−1.
But hypoellipticity of @
b does not always hold on a pseudoconvex CR
manifold M which is not strongly pseudoconvex. For example, we consider
the domain D = {(z1, z2) 2 C2 | Imz2 > [ReZ1]m,m 4 is even}. Set
M to be the boundary bD, and the tangential (1,0) vector field on M is
Z = @
@z1
+ im
2 xm−1
1
@
@t , where x = Rez1 and z2 = t + is. Let S((z, t); (w, s))
be the Szeg¨o projection from L2(C × R) onto the kernel of Z. Define
the distribution K(z, t) = S((z, t); (0, 0)). Then we can prove that K is
not analytic away from 0. In the case M = {(z1, z2, z3) 2 C3 | Imz3 =
[Rez1]m +|z2|2,m 4 is even}, the tangential (1,0) vector fields are spanned
by Z1 = @
@z1
+im
2 xm−1
1
@
@t , and Z2 = @
@z2
+iz2
@
@t . Similarly, the Szeg¨o projection
S is the orthogonal projection from L2 onto {f 2 L2 | Z1f = Z2 = 0}.
Let J(z1, z2, t) = S((z1, z2, t), (0, 0, 0)). Then we can prove that J is not analytic
away from 0, too.
Now, we consider M = {(z1, z2) 2 C2 | Imz2 = xm,m 4 is even}. We
prove the failure of @b to be analytic hypoelliptic on M directly. We examine
f(x) = e2(x+xm) Rx
−1
e−4(s+sm)ds , and define
f(x + iy, t) = Z 0
−1
e−2ite−2i||1/myf(||1/mx) d .
A calculation shows @b@
bf = 0, but @
bf(0 − i, t) is not analytic at t = 0.
1
11
[1] A. Nagel, Vector fields and nonisotropic metrics, in Beijing
Lectures in Harmonic Analysis, Ann. of Math. Studies 112,
Princeton University Press, Princeton, N.J. (1986),241-306.
[2] A. Nagel and E.M. Stein, Lectures on pseudo-dierential operators:
Regularity theorems and applications to non-elliptic
problems, Math. Notes 34, Princeton University Press, Princeton,
N.J. (1979).
[3] D. Geller, Analytic pseudodierential operators for Heisenberg
group and local solvability, Math. Notes 37, Princeton University
Press, Princeton, N.J. (1990).
[4] D.S. Tartako, Local analytic hypoellipticity for b on nondegenerate
Cauchy-Riemann manifolds, Proc. Nat. Acad.
Sci. U.S.A. 75 (1978), 3027-3028.
[5] F. Treves, Analytic hypoellipticity of a class of pseudodierential
operators with double characteristics and applications to
the @-Neumann problem, Comm. in P.D.E. 3 (1978), 475-642.
[6] G.B. Folland and E.M. Stein, Estimates for the @b complex and
analysis on the Heisenberg group, Comm. Pure and Applied
Math. 27 (1974), 429-522.
[7] M. Christ and D. Geller, Counterexamples to analytic hypoellipticity
for domains of finite type, Ann. Math. 135 (1992),
511-566.
[8] S.C. Chen and M.C. Shaw, Partial dierential equations in
several complex variables, Studies in Advanced Math. 19
(2001).
電子全文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
無相關論文
無相關期刊
1.
圖譜剩餘定理及其應用
2.
一個四階半線性拋物型方程的零邊界控制
3.
N+1維複數空間中實值超曲面的局部行為
4.
李朝世宗時期的朝鮮算學
5.
中國1368-1806年間的勾股術發展之研究
6.
多維phi係數的齊性檢定研究
7.
變異型態的最小最大定理
8.
一個非線性消失性問題相似解的存在性
9.
國三學生突破因附圖造成之論證障礙的學習歷程之研究
10.
於動態幾何環境下國中生動態心像建構與幾何推理之研究
11.
三位學生教師數學教學概念轉變歷程的個案研究
12.
UndecidabilityofFinitenessConjectureforgeneralizedspectralradius
13.
有限體上的戴凡波問題
14.
關於變分不等式的輔助問題原理
15.
平面二次與三次曲線的希爾伯特方程式
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室