跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李盈撰
論文名稱:傳染性胰臟壞死病毒(IPNV-T42G)感染大眼鮭魚胚胎細胞株(CHSE-214)後細胞週期及訊息傳遞之變化
論文名稱(外文):The changes of cell cycle progression and cellular signal transduction in Chinook salmon embryonic cells-214 after infectious pancreatic necrosis virus (IPNV-T42G) infection
指導教授:林正輝 徐亞莉 
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:傳染性胰臟壞死病毒大眼鮭魚胚胎細胞株細胞週期細胞訊息傳遞
外文關鍵詞:IPNVCHSE-214cell cyclecellular signal transduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
傳染性胰臟壞死病毒(infectious pancreatic necrosis virus, IPNV-T42G),屬於兩段雙股核醣核酸病毒科,目前是養殖漁類重要的病源之一。雖然IPNV在1960年代的早期就已經被分離出來,但是對於病毒如何誘導細胞中分子的改變以有利於病毒複製之調節機制的瞭解卻很少,故本論文主要在於探討病毒對細胞週期的調節以及細胞訊息傳遞之影響,在病毒感染複製過程中所扮演的角色。
許多病毒感染細胞後會影響細胞的分裂週期,以利於病毒的複製,本實驗以流式細胞分析技術分析CHSE-214被IPNV感染後細胞週期的變化,當病毒感染細胞週期停止在G0/G1期的細胞時,在病毒感染後的3小時內,病毒會將細胞週期停留在G0/G1-S的過渡期(78.3%的細胞在G0/G1期,12.4%在S期,9.17%在G2/M期)。這個結果說明IPNV會阻止CHSE-214細胞細胞週期的正常運行,在感染後的3小時內,IPNV會調節細胞週期以抑制細胞週期之進行。
有許多DNA 或RNA病毒在感染細胞後會誘導細胞MAPK家族訊息傳遞路徑的活化,由西方墨點法分析CHSE-214被純化過的IPNV或經UV照射過的純化IPNV吸附後細胞訊息傳遞的變化,細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會造ERK1/2以及轉錄因子CREB的磷酸酯化,同時也會抑制JNK以及p38的活性,然而病毒的吸附卻不會影響IκBα的活性,IκBα是轉錄因子NF-κB的抑制子。這些發現說明了細胞在吸附不具有感染能力的純化IPNV後就會誘導細胞訊息的傳遞,此過程並不需要病毒的基因表現,而病毒的基因表現會造成第二次的磷酸酯化作用。
Abstract
Infectious pancreatic necrosis virus (IPNV) belongs to the Birnaviridae family. It is currently one of the most serious infectious diseases in fish farming. Though IPNV was originally isolated as long as early 1960s, little is known about the mechanism related to the viral induced intracellular molecular changes that support viral replication.
In this thesis we try to assess the cell cycle progression of the infected cells and to assess the potential role of cellular signal transduction in
IPNV replication.
Infection of cells by many viruses affects the cell division cycle of their host cells to favor viral replication. The cell cycle progression was performed by flow cytometry analysis, when CHSE-214 cells synchronized by growth inhibition were infected with IPNV. IPNV infected cells were arrested in the a G0/G1 phase at 3h after infection (78.3% of the cells in the G0/G1 phase, 12.4% in the S phase, and 9.17% in the G2/M phase). The result indicats that IPNV prevent normal cell cycle progression of CHSE-214 and the event is triggered early after virus infection by specific interaction with cellular components that regulate cell cycle progression.
A variety of DNA and RNA viruses induce signaling through MAP kinase family cascades in infected cells. The Western blot analysis of the phosphorylated protein was performed in CHSE-214 cells absorbed purified IPNV which was UV irradiated or untreated when cells were starved by the medium with no serum. ERK and CREB were phosphorylated in CHSE-214 after IPNV or UV-irradiated IPNV absorption, while JNK and p38 were dephosphorylated. However, IPNV absorption did not affect the activity of IκBα, an inhibitor of transcription factor NF-κB. The results indicate that IPNV initiates a signaling pathway without viral gene products and viral gene products may lead to the second time kinase activation.
目錄
摘要 I-II
Abstract III-IV
目錄 V-VII
圖表目錄 VIII-IX
壹、緒言
一、傳染性胰臟壞死病毒
1. IPNV的分類 1
2. IPNV的分怖 2
3. IPNV的感染症狀與寄主範圍 2-3
4. IPNV的生長、生物物理與生化特性 3-4
5. IPNV的遺傳物質與蛋白質功能 4-7
6. IPNV與其它緊迫因子對水生生物的影響 7-8
7. IPNV的診斷方法 8
二、細胞週期的控制 9-12
三、訊息傳遞的調控 12-15
四、訊息傳遞在細胞週期所扮演的角色 16-17
貳、材料與方法
一、材料
1. 細胞株 18
2. 病毒 18
3. 藥品 18-20
二、方法
1. 細胞之培養 20
2. 病毒之增殖、virion的純化與力價測定 20-23
3. 流式細胞技術之分析 23-24
4. 西方墨點法之分析 24-26
貳、結果
一、IPNV感染CHSE-214可以抑制細胞週期的進行 27-28
二、純化之病毒會失去感染能力 28-30
三、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會磷酸酯化ERK 30-32
四、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會抑制p38 32
五、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會抑制JNK 33
六、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都不會改變IκBα的活性 34
七、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會磷酸酯化CREB 35
參、討論
一、IPNV感染CHSE-214可以抑制細胞週期的進行 36
二、其他病毒調節細胞週期的機制與未來研究方向 36-38
三、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會磷酸酯化ERK 39-40
四、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會抑制p38 40
五、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會抑制JNK 41
六、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都不會改變IκBα的活性 42
七、細胞在吸附純化的IPNV或經UV照射的純化IPNV後都會磷酸酯化CREB 43
八、結語 44
伍、參考文獻 45-60
陸、圖表
圖表目錄
Table 1 The effects of HBSS, purified IPNV, unpurified IPNV or M10 on CHSE-214 cell cycle progression.
Table 2 Densitometry analysis of the Western blot.
Fig. 1 IPNV infection leads the cell cycle to arrest at G0/G1 phase.
Fig. 2 The effects of HBSS, purified IPNV, unpurified IPNV and M10 on cell cycle progression.
Fig. 3 The effects of IPNV on phosophorylated ERK levels in CHSE-214.
Fig. 4 The effects of IPNV deposited under the UV light for 15min on phosophorylated ERK levels in CHSE-214.
Fig. 5 The effects of IPNV on phosophorylated p38 levels in CHSE-214.
Fig. 6 The effects of IPNV deposited under the UV light for 15min on phosophorylated p38 levels in CHSE-214.
Fig. 7 The effects of IPNV on phosophorylated JNK levels in CHSE-214.
Fig. 8 The effects of IPNV deposited under the UV light for 15min on phosophorylated JNK levels in CHSE-214.
Fig. 9 The effects of IPNV on phosophorylated IκBα levels in
CHSE-214.
Fig. 10 The effects of IPNV deposited under the UV light for 15min on phosophorylated IκBα levels in CHSE-214.
Fig. 11 The effects of IPNV on phosophorylated CREB levels in CHSE-214.
Fig. 12 The effects of IPNV deposited under the UV light for 15min on phosophorylated CREB levels in CHSE-214.
附圖1 Organization of the genome of Birnaviridae and coding assignments.
附圖2 Signal transduction pathway of ERK.
附圖3 Signal transduction pathway of p38.
附圖4 Signal transduction pathway of JNK.
附圖5 Signal transduction pathway of IκB.
附圖6 Signal transduction pathway of CREB.
伍、參考文獻
林志信,1999。傳染性胰臟壞死病毒之VP3基因功能與DNA疫苗之初步研究。國立台灣海洋大學水產養殖研究所。
Amanda, K. P., and Humphrey, T. C. 2001. Integrating stress-response and cell-cycle checkpoint pathways. TRENDs. Cell. Bio. 11:426-433..
Baldwin, A. S., and Jr. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649.
Bernard, J., and Bremont, M. 1995. Molecular biology of fish viruses: a review. Vet. Res. 26:341-351.
Braunagel, S. C., Parr, R., Belyavskyi, M., and Summers, M. D. 1998. Autographa californica Nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virol. 244: 195-211.
Boyle, K. A., Pietropaolo, R. L., and Compton, T. 1999. Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon- responsive pathway. Mol. Cell. Biol. 19: 3607-3613.
Brown, F. 1986. The classification and nomenclature of viruses: summary of results of meetings of the International Committee on Taxonomy of Viruses in Sendai, September 1984. Intervirology 25: 140-143.
Calvert, J. G., Nagy, E., Soler, M., and Dobos, P. 1990. Characterization of the Vpg-dsRNA linkage of infectious pancreatic necrosis virus. J. Gen. Virol. 2: 2563-2567.
Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. 1997. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90: 859-869.
Cayrol, C., and Flemington, E. K. 1996. The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J. 15:2748-2759.
Chang, H. W., Watson, J. C., and Jacobs, B. L. 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA —dependent protein kinase. Proc. Natl. Acad. Sci. USA. 89: 4825-4829.
Chang, N., Macdonald, R. D., and Yamamoto, T. 1978. Purification of infectious pancreatic necrosis(IPN)virus and comparison of peptide composition of different isolates. Can. J. Microbiol. 24: 19-27.
Cheetham, B. F and Bellett, A. J. 1982. A biochemical investigation of the adenovirus-induced G1 to S phase progression: thymidine kinase, ornithine decarboxylase, and inhibitors of polyamine biosynthesis.
J. Cell. Physiol.. 110:114-122.
Chen, W., Monick, M. M., Carter, A. B., and Hunninghake, G. W. 2000. Activation of ERK2 by respiratory syncytial virus in A549 cells is linked to the production of interleukin 8. Exp. Lung. Res. 26: 13-26.
Chou, H. Y., Lo, C. F., Tung, M. C., Wang, C. H., Fukuda, H., and Sano, T. 1993. The general characteristics of a birnavirus isolated from cultured loach(Misgurnus anguillicaudatus)in Taiwan. Fish Pathol. 28: 1-7.
Chou, H. Y., Peng, T. Y., Chang, S. J., Hsu, Y. L., and Wu, J. L. 1999. Effect of heavy metal stressors and salinity shock on the susceptibility of grouper (Epinephelus sp.)to infectious pancreatic necrosis virus. Vir. Res. 63: 121-129.
Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T., and Gutkind, J. S. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137-1146.
Cohen, J., Poinsard, A., and Scherrer, R. 1973. Physicochemial and morphological features of infectious pancreatic necrosis virus. J. Gen. Virol. 24:19-27.
Dickmanns, A., Zeitvogel, A., Simmersbach, F., Weber, R., Arthur, A. K., Dehde, S., Wildeman, A. G., and Fanning. 1994. The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J. Virol. 68:5496-5508.
Dobos, P. 1976. Size and structure of the genome of infectious pancreatic necrosis virus. Nucl. Acids. Res. 3: 1903-1919.
Dobos, P. 1977. Virus-specific protein synthesis in cells infected by infectious pancreatic necrosis virus. J. Virol. 21: 242-258.
Dobos, P., Hallett, R., Kells, D. T. C., Sorenson, O., and Rowe, D. 1977. Biophysical studies of infectious pancreatic necrosis virus. J. Virol. 22: 150-159.
Dobos, P., and Rowe, D. 1977. Peptide map comparison of infectious pancreatic necrosis virus-specific polypeptides. J. Virol. 24: 805-820.
Dobos, P., Hill, B. J., Hallett, R., Kells, D. T. C., Becht, H., and Teninges, D. 1979. Biophysical and biochemical characterization of five animal viruses with bisegmented dsRNA genomes. J. Virol. 32: 593-605.
Dobos, P. 1995. The molecular biology of infectious pancreatic necrosis virus (IPNV). Ann. Rev. Fish Dis. 5: 25-54.
Donaldson, A. D., and Blow, J. J. 1999. The regulation of replication origin activation. Curr. Opin. Genet. Devel. 9: 62-68.
Dyson, N., Howley, P.M., Munger, K., and Harlow. E. 1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934-937.
Duncan, R., Mason, C. L., Nagy, E., Leong, J. C., and Dobos, P. 1991. Sequence analysis of infectious pancreatic necrosis virus genome segment B and its encoded VP1 protein: a putative RNA-dependent RNA polymerase lacking the Gly-Asp-Asp motif. Virol. 191: 541-552.
Elledge, S. J. 1996. Cell cycle checkpoint preventing an crisis. Science 274:1664-1672.
Fantl, W. J., Johnson, D. E., and Williams, L. T. 1993. Signaling by receptor tyrosine kinases. Annu. Rev. Biochem. 62: 453-481.
Featherstone, C., and Russell, P. 1991. Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase. Nature 349:808-811.
Ganga, M. A., Gonzalez, M. P., Lopez-Lastra M., and Sandio, A. M. 1994. Polyacrylamide gel electrophoresis of viral genomic RNA as a diagnosis method for infectious pancresatic necrosis virus detection. J. Virol. Meth.50: 227-236.
Gautier, M. J., Solomon, R. N., Booher, J. F., Bazan, and M. W. Kirschner. 1991. Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197-211.
Ghosh, S., May, M. J., and Kopp, E. B. 1998. NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225-260.
Gibellini, D., Bassini, A., Pierpaoli, S., Bertolaso, L., Milani, D., Capitani, S., Placa, M. L. and Zauli, G. 1998. Extracellular HIV-1 Tat protein induces the rapid Ser133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells. J. Immunol. 160: 3891-3898.
Gloger, I., Arad, G., and Panet, A. 1985. Regulation of Moloney murine leukemia virus replication in chronically infected cells arrested at the G0/G1 phase. J. Virol. 54:844-850.
Haneda, M., Sugimoto, T., and Kikkawa, R. 1999. Mitogen-activated protein kinase phosphatase: a negative regulator of the mitogen-activated protein kinase cascade. Eur. J. Pharmacol. 15: 1-7.
Hanks, S. K., Quinn, A. M., and Hunter ,T. 1988. The protein kinase family : conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52.
Hanks, S. K., and Hunter, T. 1995. Protein kinase 6. The eukaryotic protein kinase superfamily: kinase(catalytic)domain structure and classification. FASEB J. 9: 576-596.
Hattori, M., Kodama, H., Ishiguro, S., Honda, A., Mikami, T., and Izawa, H. 1984. In vitro and in vivo detection of infectious pancreatic necrosis virus in fish by enzyme-linked immunosorbent assay. Am. J. Vet. Res. 45: 1876-1879.
Hedrick, R. P., Fryer, J. L., Chen, S. N., and Kou, D. H. 1983. Characteristics of four birnavirus isolated from fish in Taiwan. Fish Pathol. 18:91-97.
Hershko, A. 1997. Roles of ubiquitin-mediated proteolysis in cell cycle control. Cruu. Opin. Cell. Biol. 9: 788-799.
Hill, B. J., and Way, K. 1983. Serological classification of fish and selfish birnaviruses. In abstract of fish international conference of the European Association of Fish Pathologists.
Ho, C. K., and Shuman, S. 1996. Physical and functional characterization of the double-stranded RNA binding protein encoded by the vaccinia virus E3 gene. Virol. 217: 272-284.
Hsu, Y. L., Chen , B. S., and Wu, J. L. 1989a. Comparison of RNAs and polypeptides of infectious pancreatic necrosis virus from eel and rainbow trout. J. Gen. Virol. 70: 2233-2239.
Hsu, Y. L., Chiang, S.Y., Lin, S. T., and Wu, J. L. 1989b. The specific detection of infectious pancreatic necrosis virus in infected cells and fish by the immuno dot blot method. J. Fish Dis. 12: 561-571.
Hsu, Y. L., Hong, J. L., Wu, M. F., and Wu, J. L. 1993. Infectious pancreatic necrosis virus infection in Taiwan’s aquatic fishes. J. Fish. Soc. Taiwan 20: 249-256.
Hsu, Y. L., Chen, C. C., and Wu, J. L. 1995. Molecular relayionships in infectious pancreatic necrosis virus. Vir. Res. 37: 239-252.
Johson, R. A., Huong, S. M., and Huang, E. S. 2000. Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. J. Virol. 74: 1158-1167.
Jowett, J. B., Planekkse, V., Poon, B., Shah, N. P., Chen, M. L., and Chen, I. S. 1995.The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2/M phase of the cell cycle. J. Virol. 69:6304-6313.
Kioukia, N., Nienow, A. W., Emery, A. N., and Al-Rubeai, M. 1995. Physiological and enverinmental factors affecting the growth of infect cells and infection with baculovirus. J. Biotechnol. 38: 243-251.
Khokhlatchev, A. V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E., and Cobb, M. H. 1998. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605-615.
King, R. W., Deshaies, R. J., J Peters, J. M., and Kirschner, M. W. 1996. How Proteolysis Drives the Cell Cycle. Science 274: 1652-1659.
Komalik, T. F., Wing, B., Haskill, J. S., Azizkhan, J. C., Baldwin, Jr., and E.-S. Huang. 1993. Multiple mechanisms are implicated in the regulation of NF-κB activity during human cytomegalovirus infection. Proc. Natl. Acad. Sci. U.S.A. 90:1107.
Lannuzel, A., Barnier, J. V., Hery, C., Huynh, V. T., Guibert, B., Gray, F., Vincent, J. D., and Tardieu, M. 1997. Human immunodeficiency virus type 1 and its coat protein gp120 induce apoptosis and activate JNK and ERK mitogen-activated protein kinases in human neurons. 42: 847-856.
Lee, K. K., Yang, T. I., Liu, P. C., Wu, J. L., and Hsu, Y. L. 1999. Dual phosphorylation of infectious pancreatic necrosis virus and Vibrio carchariae in the grouper, Epinephelus sp. Vir. Res. 63: 131-134.
Lejal, N., Costa, B. D., Huet, J. C., and Delmas, B. 2000. Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of the substrate cleavage sites. J. Gen. Virol. 81: 983-992.
Lloyd R. M., and Shatkin, A. J. 1992. Translational stimulation by reovirus polypeptides sigma 3: substitution for VAI RNA and inhibition of phosphorylation of the alpha subunit of eukaryotic inhibition factor 2. J. Virol. 66: 6878-6884.
Lo, C. F., Hong, Y. W., Huang, S. Y., and Wang, C. H. 1988. The characteristics of the virus isolated from the gill of clam, Meretrix lusoria. Fish Pathol. 23: 147-154.
Lo, E. G. 1987. Biochemical and immunological characteristics of a virus isolated from largemouth bass, Microterus salmmoids(Lacpede). Master thesis.
Lodish, L., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., and Darnell, J. 1995. Molecular Cell Biology. 574-575pp.
Lodish, L., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. E. 2000. Regulation of the Eukaryotic Cell Cycle. In ’’Molecular Cell Biology’’. By W. H. Freeman and Company. 495-536 pp (a).
Lodish, L., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. E. 2000. Cell-to-Cell Signaling: Hormone and Receptors. In ’’Molecular Cell Biology’’. By W. H. Freeman and Company .848-910pp (b).
Lomonte, P., and Everett, R. D. 1999. Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J. Virol. 73: 9456-9467.
Macdonald, R. D., and Yamamoto, T. 1977. The structure of infectious pancreatic necrosis virus RNA. J. Gen. Virol. 34: 235-247.
Macdonald, R. D., and Kennedy, J. C. 1979. Infectious pancreatic necrosis virus persistently infects Chinook salmon embryo cells independent of interferon. Virol. 95: 260-264.
Magyar, G., Dobos, P. 1994. Evidence for the detection of the infectious pancreatic necrosis virus polyprotein and the 17-kDa polypeptide in infected cells and of the NS protease in purified virus. Virol. 204: 580-589.
Malsberger, R. G., and Cerini, C. P. 1963. Characteristics of infectious pancreatic necrosis virus. J. Bacteriol. 86: 1283-1287.
Manning, D. S., Mason, C. L., and Leong, J. C. 1990. Cell-free translational analysis of the processing of infectious pancreatic necrosis virus polyprotein. Virol. 179: 9-15.
MeLean, T. L., and Bachenheimer, S. L. 1999. Activation of c-jun N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J. Virol. 73: 8415-8426.
Motoko I. and Michihiro K. 1999. Cell-cycle perturbation in Sf9 cells infected with Autographa californica Nucleopolyhedrovirus. Virol. 258: 176-188.
Nasmyth, K. 1996. Viewpoint: putting the cell cycle in order. Science 274: 1643-1645.
Nicholoson, B. L., and Dunn, J. 1974. Homologous viral interference in trout and Atlantic salmon cell cultures infected with infectious pancreatic necrosis virus. J. Virol. 14: 180-182.
Nicholoson, B. 1993. Use of monoclonal antibodies in identification and characterization of fish viruses. Ann. Rev. Fish Dis. 3: 241-257.
Noga, E. J. 1996. Infectious pancreatic necrosis. In’’Fish Disease Diagnosis and Treatment’’. By Walsworth Publishing Co. 208-211pp.
Parker, D., Perreri, K., Nakajima, T., LaMorte, V. J., Evans, R., Koerber, S. C., Hoeger, C., and Montminy, M. R. 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16: 694-703.
Perez, L., Chiou, P. P., and Leong, J. C. 1996. The structure proteins of infectious pancreatic necrosis virus are not glycosylated. J. Virol. 70: 7247-7249.
Petit, S., Lejal, N., Huet, J. C., and Delmas, B. 2000. Active residues and viral substrate cleavage sites of the protease of the birnavirus infectious pancreatic necrosis virus. J. Virol. 74: 2057-2066.
Planas-Silva, M. D., and Weinberg, R. A. 1997. The restriction point and control of cell proliferation. Curr. Opin. Cell. Boil. 9: 768-772.
Poch, O., Sauvaget, I., Delarue, M., and Tordo, N. 1989. Identification of four conserved motifs among the RNA-dependent RNA polymerase encoding elements. EMBO J. 8: 3867-3874.
Popik, W., and Pitha, P. M. 1998. Early activation of mitogen-activated protein kinase kinase, extracellular signal-regylated kinase, P38 mitogen activated protein kinaes, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virol. 252: 210-217.
Poggioli, G. J., Dermody, T. S., and Tyler, K. L. 2001. Reovirus-induced σ1s-dependent G2/M phase cell cycle arrest is associated with inhibition of p34cdc2. J. Virol. 75: 7429-7434.
Popik, W., Hesselgesser, J. E. and Pitha, P. M. 1998. Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J. Virol. 72: 6406-6413.
Rimstad, E., Krona, R., Hornes, E., Olsvik, O., and Hyllseth, B. 1990. Detection of infectious pancreatic necrosis virus(IPNV)RNA by hybridization with an oligonucleotide DNA probe. Vet. Microbiol. 23: 211-219.
Rodems, S. M., and Spector, D. H. 1998. Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J. Virol. 72: 9173-9180.
Ross, P. S., De Swart, R. L., Van Loveren, H., Osterhaus, A. D. M. E., Vos, J. G. 1996. The immunotoxicity of environmental contaminants to marine wildlife: a review. Annu. Rev. Fish Dis. 6: 151-165.
Saudan, P., vlach, J., and Beard, P. 2000. Inhibition of S-phase progression by adeno-associated virus Rep78 protein is mediated by hypophosphorylated pRb.
EMBO J.19: 4351-4361.
Schmitt, J., Rosin, O., Rohwer, P., Gossen, M., and Grassmann, R. 1998. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J. Virol. 72: 633-640.
Shin, E. K., Tevosian, S. G., and Yee, A. S. 1996.The N-terminal region of E2F-1 is required for transcriptional activation of a new class of target promoter. J. Biol. Chem. 271:12261-12268.
Suyang, H., Phillips, R., Douglas, I., and Ghosh, S. 1996. Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol. Cell. Biol. 16: 5444.
Swenson, J. J., Mauser, A. E., Kaufmann, W. K., and Kenney, S. C. 1999.The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol. 73: 6540-6550.
Swenson, K. I., Farrell, K. M., and Ruderman, J. V. 1986. The clam embryo cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell 47: 861-870.
Takenaka, K., Moriguchi, T., and Nishida, E. 1998. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280: 599-602.
Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P., and Ghosh, S. 1995. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573.
Tibbles L. A. and Woodgett J. R. 1999. The stress activated protein kinase pathways. CMLS, Cell. Mol. Life Sci. 55: 1230-1254.
Underwood, B. O., Smale, C. J., Brown, F., and Hill, B. 1977. Relationship of a virus from Tellina tenuis to infectious pancreatic necrosis virus. J. Gen. Virol. 36: 93-109.
Uneo, Y., Chen, S. N., Kou, G. H., Hedrick, R. P., and Fryer, J. L. 1984. Characterization of virus isolated from Japanese eel(Anguilla japonica)with nephroblastoma. Bull. Inst. Zool. Acad. Sinica 23: 47-55.
Watson, J. C., Chang, H. W., and Jacobs, B. L. 1991. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that maybe involved in inhibition of the double-stranded RNA-dependent protein kinase. Virol. 185: 206-216.
Williams, K., Black, S., Sweeney, A., Singer J. T., and Nicholson, B. L. 1999. Multiple reverse transcriptase PCR assay for simultaneous detection of three fish viruses. J. Clin.Microbiol. 37: 4139-4141.
Widmann C., Gibson S. Jarpe M. B., and Johnson G. L. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiolgical Rev. 79: 143-180.
Wolf, K., and Mann, J. A. 1980. Poikilotherm vetebrate cell line and viruses: a current listing for fish. Virol. 16: 168-179.
Wolf, K. 1988. The viruses and viral diseases of fish. Cornell University Press.
Wu, J. L., Lin, H. M., Tang, F. J., Kou, G. H., and Liu, K. C. 1983. Isolation and characterization of IPNV from rainbow trout in Taiwan. Proceeding of ROC-Japan Cooperative Science Seminar on Fish Disease. 59-67pp.
Xing, J., Ginty, D. D., and Greenberg, M. E. 1996. Couplingnof the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinases. Science 273: 959.
Yang, S. I., Lickteig, R. L., Estes, R., K. Rundell, K., Walter, G., and Mumby, M. C. 1991. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol. Cell. Biol. 11: 1988-1995.
Yue, Z., and Shatkin, A. J. 1996. Double-stranded RNA —dependent protein kinase(PKR)is regulated by reovirus structural proteins. Virol. 234: 364-371.
Yurochko, A. D. Kowalik, T. F. Huong, S.-M. and Huang E.-S. 1995. HCMV upregulates NF-κB activity by transactivating the NF-κB p105/p50- and p65-promoters. J. Virol. 69: 5391.
Yurochko, A. D. and Huang, E.-S. 1999. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. 162: 4806-4816.
Yurochko, A. D. and Huang, E. S. 1999. Human Cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J. Immuno. 162: 4806-4816.
Zachos, G., Clements, B., and Conner. J. 1999. Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminalmitogen-activated protein kinase pathways and activates transcription factor AP-1. J. Biol. Chem. 275: 5097-5103.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top